TU Darmstadt / ULB / TUbiblio

Nonlinear frequency response analysis of structural vibrations

Weeger, Oliver ; Wever, Utz ; Simeon, Bernd (2022)
Nonlinear frequency response analysis of structural vibrations.
In: Computational Mechanics, 2014, 54 (6)
doi: 10.26083/tuprints-00019813
Artikel, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Weeger, Oliver ; Wever, Utz ; Simeon, Bernd
Art des Eintrags: Zweitveröffentlichung
Titel: Nonlinear frequency response analysis of structural vibrations
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2014
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computational Mechanics
Jahrgang/Volume einer Zeitschrift: 54
(Heft-)Nummer: 6
Kollation: 19 Seiten
DOI: 10.26083/tuprints-00019813
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19813
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-198133
Zusätzliche Informationen:

Keywords: Nonlinear vibration, model reduction, modal derivatives, harmonic balance, isogeometric analysis

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 06 Jan 2022 13:06
Letzte Änderung: 07 Jan 2022 08:10
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen