Weeger, Oliver ; Wever, Utz ; Simeon, Bernd (2022)
Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations.
In: Nonlinear Dynamics, 2013, 72 (4)
doi: 10.26083/tuprints-00019802
Artikel, Zweitveröffentlichung, Postprint
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
In this paper we analyze the vibrations of nonlinear structures by means of the novel approach of isogeometric finite elements. The fundamental idea of isogeometricfinite elements is to apply the same functions, namely B-Splines and NURBS (Non-Uniform Rational B-Splines), fordescribing the geometry and for representing the numericalsolution. In case of linear vibrational analysis, this approachhas already been shown to possess substantial advantages over classical finite elements, and we extend it here to a non-linear framework based on the harmonic balance principle. As application, the straight nonlinear Euler-Bernoulli beamis used, and overall, it is demonstrated that isogeometric finite elements with B-Splines in combination with the harmonic balance method are a powerful means for the analysisof nonlinear structural vibrations. In particular, the smoother k-method provides higher accuracy than the p-method forisogeometric nonlinear vibration analysis.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Weeger, Oliver ; Wever, Utz ; Simeon, Bernd |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Publikationsdatum der Erstveröffentlichung: | 2013 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Nonlinear Dynamics |
Jahrgang/Volume einer Zeitschrift: | 72 |
(Heft-)Nummer: | 4 |
Kollation: | 17 Seiten |
DOI: | 10.26083/tuprints-00019802 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/19802 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | In this paper we analyze the vibrations of nonlinear structures by means of the novel approach of isogeometric finite elements. The fundamental idea of isogeometricfinite elements is to apply the same functions, namely B-Splines and NURBS (Non-Uniform Rational B-Splines), fordescribing the geometry and for representing the numericalsolution. In case of linear vibrational analysis, this approachhas already been shown to possess substantial advantages over classical finite elements, and we extend it here to a non-linear framework based on the harmonic balance principle. As application, the straight nonlinear Euler-Bernoulli beamis used, and overall, it is demonstrated that isogeometric finite elements with B-Splines in combination with the harmonic balance method are a powerful means for the analysisof nonlinear structural vibrations. In particular, the smoother k-method provides higher accuracy than the p-method forisogeometric nonlinear vibration analysis. |
Status: | Postprint |
URN: | urn:nbn:de:tuda-tuprints-198020 |
Zusätzliche Informationen: | Keywords: Isogeometric analysis, finite element method, nonlinear vibration, harmonic balance, nonlinear beam |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS) |
Hinterlegungsdatum: | 06 Jan 2022 13:02 |
Letzte Änderung: | 07 Jan 2022 08:09 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations. (deposited 06 Jan 2022 13:02) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |