Weeger, Oliver ; Narayanan, Bharath ; De Lorenzis, Laura ; Kiendl, Josef ; Dunn, Martin L. (2022)
An isogeometric collocation method for frictionless contact of Cosserat rods.
In: Computer Methods in Applied Mechanics and Engineering, 2017, 321
doi: 10.26083/tuprints-00019826
Artikel, Zweitveröffentlichung, Postprint
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
A frictionless contact formulation for spatial rods is developed within the framework of isogeometric collocation. The structural mechanics is described by the Cosserat theory of geometrically nonlinear spatial rods. The numerical discretization is based on an isogeometric collocation method, where the geometry and solution fields are represented as NURBS curves and the strong forms of the equilibrium equations are collocated at Greville points. In this framework, a frictionless rod-to-rod contact formulation is proposed. Contact points are detected by a coarse-level and a refined search for close centerline points and reaction forces are computed by the actual penetration of rod surface points, so that the enforcement of the contact constraints is performed with the penalty method. An important aspect is the application of contact penalty forces as point loads within the collocation scheme, and methods for this purpose are proposed and evaluated. The overall contact algorithm is validated by and applied to several numerical examples.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Weeger, Oliver ; Narayanan, Bharath ; De Lorenzis, Laura ; Kiendl, Josef ; Dunn, Martin L. |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | An isogeometric collocation method for frictionless contact of Cosserat rods |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Publikationsdatum der Erstveröffentlichung: | 2017 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Computer Methods in Applied Mechanics and Engineering |
Jahrgang/Volume einer Zeitschrift: | 321 |
Kollation: | 22 Seiten |
DOI: | 10.26083/tuprints-00019826 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/19826 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | A frictionless contact formulation for spatial rods is developed within the framework of isogeometric collocation. The structural mechanics is described by the Cosserat theory of geometrically nonlinear spatial rods. The numerical discretization is based on an isogeometric collocation method, where the geometry and solution fields are represented as NURBS curves and the strong forms of the equilibrium equations are collocated at Greville points. In this framework, a frictionless rod-to-rod contact formulation is proposed. Contact points are detected by a coarse-level and a refined search for close centerline points and reaction forces are computed by the actual penetration of rod surface points, so that the enforcement of the contact constraints is performed with the penalty method. An important aspect is the application of contact penalty forces as point loads within the collocation scheme, and methods for this purpose are proposed and evaluated. The overall contact algorithm is validated by and applied to several numerical examples. |
Status: | Postprint |
URN: | urn:nbn:de:tuda-tuprints-198263 |
Zusätzliche Informationen: | Keywords: Isogeometric analysis, Collocation method, Contact formulation, Nonlinear rods |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS) |
Hinterlegungsdatum: | 04 Jan 2022 14:12 |
Letzte Änderung: | 05 Jan 2022 07:56 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- An isogeometric collocation method for frictionless contact of Cosserat rods. (deposited 04 Jan 2022 14:12) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |