TU Darmstadt / ULB / TUbiblio

Isogeometric collocation methods for Cosserat rods and rod structures

Weeger, Oliver ; Yeung, Sai-Kit ; Dunn, Martin L. (2022)
Isogeometric collocation methods for Cosserat rods and rod structures.
In: Computer Methods in Applied Mechanics and Engineering, 2016, 316
doi: 10.26083/tuprints-00019821
Artikel, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We present a novel method for the mechanical simulation of slender, elastic, spatial rods and rod structures subject to large deformation and rotation. We develop an isogeometric collocation method for the geomet-rically exact, nonlinear Cosserat rod theory. The rod centerlines are represented as spatial NURBS curvesand cross-section orientations are parameterized in terms of unit quaternions as 4-dimensional NURBS curves. Within the isogeometric framework, the strong forms of the equilibrium equations of forces and moments of the discretized Cosserat model are collocated, leading to an efficient method for higher-order discretizations. For rod structures consisting of multiple, connected rods we introduce a formulation withrigid, quasi-G1-coupling. It is based on the strong enforcement of continuity of displacement and change of cross-section orientation at interfaces. We also develop a mixed isogeometric formulation, which is basedon an independent discretization of internal forces and moments and alleviates shear locking for thin rods. The novel rod simulation methods are verified by numerical convergence studies. Further computational examples include realistic applications with large deformations and rotations, as well as a large-scale rodstructure with several hundreds of coupled rods and complex buckling behavior.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Weeger, Oliver ; Yeung, Sai-Kit ; Dunn, Martin L.
Art des Eintrags: Zweitveröffentlichung
Titel: Isogeometric collocation methods for Cosserat rods and rod structures
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2016
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computer Methods in Applied Mechanics and Engineering
Jahrgang/Volume einer Zeitschrift: 316
Kollation: 24 Seiten
DOI: 10.26083/tuprints-00019821
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19821
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

We present a novel method for the mechanical simulation of slender, elastic, spatial rods and rod structures subject to large deformation and rotation. We develop an isogeometric collocation method for the geomet-rically exact, nonlinear Cosserat rod theory. The rod centerlines are represented as spatial NURBS curvesand cross-section orientations are parameterized in terms of unit quaternions as 4-dimensional NURBS curves. Within the isogeometric framework, the strong forms of the equilibrium equations of forces and moments of the discretized Cosserat model are collocated, leading to an efficient method for higher-order discretizations. For rod structures consisting of multiple, connected rods we introduce a formulation withrigid, quasi-G1-coupling. It is based on the strong enforcement of continuity of displacement and change of cross-section orientation at interfaces. We also develop a mixed isogeometric formulation, which is basedon an independent discretization of internal forces and moments and alleviates shear locking for thin rods. The novel rod simulation methods are verified by numerical convergence studies. Further computational examples include realistic applications with large deformations and rotations, as well as a large-scale rodstructure with several hundreds of coupled rods and complex buckling behavior.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-198217
Zusätzliche Informationen:

Isogeometric analysis, Collocation method, NURBS basis functions, Cosserat rod model, Rod structures, Locking-free methods

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 04 Jan 2022 14:06
Letzte Änderung: 05 Jan 2022 07:56
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen