TU Darmstadt / ULB / TUbiblio

Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing

Valizadeh, Iman ; Al Aboud, Ahmad ; Dörsam, Edgar ; Weeger, Oliver (2021)
Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing.
In: Additive Manufacturing, 2021, 47
doi: 10.26083/tuprints-00019876
Artikel, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Photopolymerization-based additive manufacturing methods like stereolithography and digital light processing only allow typically the monolithic fabrication of structures made from a single material. To overcome this limitation, grayscale digital light processing has been proposed for 3D printing of functionally graded materials. Here, this concept is extended to grayscale masked stereolithography (MSLA) printing using a LED light source and a LCD photomask to control the degree of photopolymerization of a UV-curable resin by varying grayscale pixels and thus light intensities. In this scale, tailorable hyperelastic material properties and functionally graded structures for finite deformations are realized. In this paper, the dependency of the resulting material properties on the parameters of the grayscale MSLA process is investigated and a grayscale-dependent hyperelastic material model is formulated. This parametric hyperelastic material model is fitted to the experiments and validated against experimental results for uniaxial tension and uniaxial compression tests. Then, functionally graded structures with tailored mechanical properties at finite deformations are designed and fabricated using grayscale MSLA printing. The hyperelastic material model is validated with experimental results for different geometries, showing good agreement between experimental tests and numerical calculations.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Valizadeh, Iman ; Al Aboud, Ahmad ; Dörsam, Edgar ; Weeger, Oliver
Art des Eintrags: Zweitveröffentlichung
Titel: Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Additive Manufacturing
Jahrgang/Volume einer Zeitschrift: 47
Kollation: 16 Seiten
DOI: 10.26083/tuprints-00019876
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19876
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Photopolymerization-based additive manufacturing methods like stereolithography and digital light processing only allow typically the monolithic fabrication of structures made from a single material. To overcome this limitation, grayscale digital light processing has been proposed for 3D printing of functionally graded materials. Here, this concept is extended to grayscale masked stereolithography (MSLA) printing using a LED light source and a LCD photomask to control the degree of photopolymerization of a UV-curable resin by varying grayscale pixels and thus light intensities. In this scale, tailorable hyperelastic material properties and functionally graded structures for finite deformations are realized. In this paper, the dependency of the resulting material properties on the parameters of the grayscale MSLA process is investigated and a grayscale-dependent hyperelastic material model is formulated. This parametric hyperelastic material model is fitted to the experiments and validated against experimental results for uniaxial tension and uniaxial compression tests. Then, functionally graded structures with tailored mechanical properties at finite deformations are designed and fabricated using grayscale MSLA printing. The hyperelastic material model is validated with experimental results for different geometries, showing good agreement between experimental tests and numerical calculations.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-198762
Zusätzliche Informationen:

Additive manufacturing, Stereolithography, Hyperelastic materials, Functionally graded materials

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 16 Dez 2021 13:52
Letzte Änderung: 17 Dez 2021 08:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen