TU Darmstadt / ULB / TUbiblio

On the use of modal derivatives for nonlinear model order reduction

Weeger, Oliver ; Wever, Utz ; Simeon, Bernd (2021)
On the use of modal derivatives for nonlinear model order reduction.
In: International Journal for Numerical Methods in Engineering, 2016, 108 (13)
doi: 10.26083/tuprints-00019820
Artikel, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Modal derivative is an approach to compute a reduced basis for model order reduction of large-scale nonlinear systems that typically stem from the discretization of partial differential equations. In this way, a complex nonlinear simulation model can be integrated into an optimization problem or the design of a controller, based on the resulting small-scale state-space model. We investigate the approximation properties of modal derivatives analytically and thus lay a theoretical foundation of their use in model order reduction, which has been missing so far. Concentrating on the application field of structural mechanics and structural dynamics, we show that the concept of modal derivatives can also be applied as nonlinear extension of the Craig–Bampton family of methods for substructuring. We furthermore generalize the approach from a pure projection scheme to a novel reduced-order modeling method that replaces all nonlinear terms by quadratic expressions in the reduced state variables. This complexity reduction leads to a frequency-preserving nonlinear quadratic state-space model. Numerical examples with carefully chosen nonlinear model problems and three-dimensional nonlinear elasticity confirm the analytical properties of the modal derivative reduction and show the potential of the proposed novel complexity reduction methods, along with the current limitations.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Weeger, Oliver ; Wever, Utz ; Simeon, Bernd
Art des Eintrags: Zweitveröffentlichung
Titel: On the use of modal derivatives for nonlinear model order reduction
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2016
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal for Numerical Methods in Engineering
Jahrgang/Volume einer Zeitschrift: 108
(Heft-)Nummer: 13
Kollation: 25 Seiten
DOI: 10.26083/tuprints-00019820
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19820
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Modal derivative is an approach to compute a reduced basis for model order reduction of large-scale nonlinear systems that typically stem from the discretization of partial differential equations. In this way, a complex nonlinear simulation model can be integrated into an optimization problem or the design of a controller, based on the resulting small-scale state-space model. We investigate the approximation properties of modal derivatives analytically and thus lay a theoretical foundation of their use in model order reduction, which has been missing so far. Concentrating on the application field of structural mechanics and structural dynamics, we show that the concept of modal derivatives can also be applied as nonlinear extension of the Craig–Bampton family of methods for substructuring. We furthermore generalize the approach from a pure projection scheme to a novel reduced-order modeling method that replaces all nonlinear terms by quadratic expressions in the reduced state variables. This complexity reduction leads to a frequency-preserving nonlinear quadratic state-space model. Numerical examples with carefully chosen nonlinear model problems and three-dimensional nonlinear elasticity confirm the analytical properties of the modal derivative reduction and show the potential of the proposed novel complexity reduction methods, along with the current limitations.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-198209
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 15 Dez 2021 10:47
Letzte Änderung: 16 Dez 2021 06:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen