TU Darmstadt / ULB / TUbiblio

Controllable helical deformations on printed anisotropic composite soft actuators

Wang, Dong ; Li, Ling ; Serjouei, Ahmad ; Dong, Longteng ; Weeger, Oliver ; Gu, Guoying ; Ge, Qi (2021)
Controllable helical deformations on printed anisotropic composite soft actuators.
In: Applied Physics Letters, 112 (18)
doi: 10.26083/tuprints-00019840
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Helical shapes are ubiquitous in both nature and engineering. However, the development of soft actuators and robots that mimic helical motions has been hindered primarily due to the lack of efficient modeling approaches that take into account the material anisotropy and the directional change of the external loading point. In this work, we present a theoretical framework for modeling controllable helical deformations of cable-driven, anisotropic, soft composite actuators. The framework is based on the minimum potential energy method, and its model predictions are validated by experiments, where the microarchitectures of the soft composite actuators can be precisely defined by 3D printing. We use the developed framework to investigate the effects of material and geometric parameters on helical deformations. The results show that material stiffness, volume fraction, layer thickness, and fiber orientation can be used to control the helical deformation of a soft actuator. In particular, we found that a critical fiber orientation angle exists at which the twist of the actuator changes the direction. Thus, this work can be of great importance for the design and fabrication of soft actuators with tailored deformation behavior.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Wang, Dong ; Li, Ling ; Serjouei, Ahmad ; Dong, Longteng ; Weeger, Oliver ; Gu, Guoying ; Ge, Qi
Art des Eintrags: Zweitveröffentlichung
Titel: Controllable helical deformations on printed anisotropic composite soft actuators
Sprache: Englisch
Publikationsjahr: 2021
Verlag: AIP
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applied Physics Letters
Jahrgang/Volume einer Zeitschrift: 112
(Heft-)Nummer: 18
DOI: 10.26083/tuprints-00019840
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19840
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Helical shapes are ubiquitous in both nature and engineering. However, the development of soft actuators and robots that mimic helical motions has been hindered primarily due to the lack of efficient modeling approaches that take into account the material anisotropy and the directional change of the external loading point. In this work, we present a theoretical framework for modeling controllable helical deformations of cable-driven, anisotropic, soft composite actuators. The framework is based on the minimum potential energy method, and its model predictions are validated by experiments, where the microarchitectures of the soft composite actuators can be precisely defined by 3D printing. We use the developed framework to investigate the effects of material and geometric parameters on helical deformations. The results show that material stiffness, volume fraction, layer thickness, and fiber orientation can be used to control the helical deformation of a soft actuator. In particular, we found that a critical fiber orientation angle exists at which the twist of the actuator changes the direction. Thus, this work can be of great importance for the design and fabrication of soft actuators with tailored deformation behavior.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-198409
Zusätzliche Informationen:

Supplement:

https://aip.scitation.org/doi/suppl/10.1063/1.5025370/suppl_file/supplemental+materials_revised_unmarked.docx

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 15 Dez 2021 10:24
Letzte Änderung: 16 Dez 2021 06:48
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen