Wang, Dong ; Li, Ling ; Serjouei, Ahmad ; Dong, Longteng ; Weeger, Oliver ; Gu, Guoying ; Ge, Qi (2021)
Controllable helical deformations on printed anisotropic composite soft actuators.
In: Applied Physics Letters, 2018, 112 (18)
doi: 10.26083/tuprints-00019840
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Helical shapes are ubiquitous in both nature and engineering. However, the development of soft actuators and robots that mimic helical motions has been hindered primarily due to the lack of efficient modeling approaches that take into account the material anisotropy and the directional change of the external loading point. In this work, we present a theoretical framework for modeling controllable helical deformations of cable-driven, anisotropic, soft composite actuators. The framework is based on the minimum potential energy method, and its model predictions are validated by experiments, where the microarchitectures of the soft composite actuators can be precisely defined by 3D printing. We use the developed framework to investigate the effects of material and geometric parameters on helical deformations. The results show that material stiffness, volume fraction, layer thickness, and fiber orientation can be used to control the helical deformation of a soft actuator. In particular, we found that a critical fiber orientation angle exists at which the twist of the actuator changes the direction. Thus, this work can be of great importance for the design and fabrication of soft actuators with tailored deformation behavior.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Wang, Dong ; Li, Ling ; Serjouei, Ahmad ; Dong, Longteng ; Weeger, Oliver ; Gu, Guoying ; Ge, Qi |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Controllable helical deformations on printed anisotropic composite soft actuators |
Sprache: | Englisch |
Publikationsjahr: | 2021 |
Publikationsdatum der Erstveröffentlichung: | 2018 |
Verlag: | AIP |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Applied Physics Letters |
Jahrgang/Volume einer Zeitschrift: | 112 |
(Heft-)Nummer: | 18 |
DOI: | 10.26083/tuprints-00019840 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/19840 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Helical shapes are ubiquitous in both nature and engineering. However, the development of soft actuators and robots that mimic helical motions has been hindered primarily due to the lack of efficient modeling approaches that take into account the material anisotropy and the directional change of the external loading point. In this work, we present a theoretical framework for modeling controllable helical deformations of cable-driven, anisotropic, soft composite actuators. The framework is based on the minimum potential energy method, and its model predictions are validated by experiments, where the microarchitectures of the soft composite actuators can be precisely defined by 3D printing. We use the developed framework to investigate the effects of material and geometric parameters on helical deformations. The results show that material stiffness, volume fraction, layer thickness, and fiber orientation can be used to control the helical deformation of a soft actuator. In particular, we found that a critical fiber orientation angle exists at which the twist of the actuator changes the direction. Thus, this work can be of great importance for the design and fabrication of soft actuators with tailored deformation behavior. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-198409 |
Zusätzliche Informationen: | Supplement: https://aip.scitation.org/doi/suppl/10.1063/1.5025370/suppl_file/supplemental+materials_revised_unmarked.docx |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS) |
Hinterlegungsdatum: | 15 Dez 2021 10:24 |
Letzte Änderung: | 16 Dez 2021 06:48 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Controllable helical deformations on printed anisotropic composite soft actuators. (deposited 15 Dez 2021 10:24) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |