TU Darmstadt / ULB / TUbiblio

Isogeometric shape optimization of nonlinear, curved 3D beams and beam structures

Weeger, Oliver ; Narayanan, Bharath ; Dunn, Martin L. (2021)
Isogeometric shape optimization of nonlinear, curved 3D beams and beam structures.
In: Computer Methods in Applied Mechanics and Engineering, 345
doi: 10.26083/tuprints-00019865
Artikel, Zweitveröffentlichung, Postprint

Kurzbeschreibung (Abstract)

Straight beams, rods and trusses are common elements in structural and mechanical engineering, but recent advances in additive manufacturing now also enable efficient freeform fabrication of curved, deformable beams and beam structures, such as microstructures, metamaterials and conformal lattices. To exploit this new design freedom for applications with nonlinear mechanical behavior, we introduce an isogeometric method for shape optimization of curved 3D beams and beam structures. The geometrically exact Cosserat rod theory is used to model nonlinear 3D beams subject to large deformations and rotations. The initial and current geometry are parameterized in terms of NURBS curves describing the beam centerline and an isogeometric collocation approach is used to discretize the strong form of the balance equations. Then, a nonlinear optimization problem is formulated in order to optimize the positions of the control points of the NURBS curve that describes the beam centerline, i.e., the geometry or shape of the beam. To solve the design problem using gradient-based algorithms, we introduce semi-analytical, inconsistent analytical and fully analytical approaches for calculation of design sensitivities. The methods are numerically validated and their performance is investigated, before the applicability and versatility of our 3D beam shape optimization method is illustrated in various numerical applications, including optimization of an auxetic 3D metamaterial.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Weeger, Oliver ; Narayanan, Bharath ; Dunn, Martin L.
Art des Eintrags: Zweitveröffentlichung
Titel: Isogeometric shape optimization of nonlinear, curved 3D beams and beam structures
Sprache: Englisch
Publikationsjahr: 2021
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computer Methods in Applied Mechanics and Engineering
Jahrgang/Volume einer Zeitschrift: 345
Kollation: 27 Seiten
DOI: 10.26083/tuprints-00019865
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19865
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Straight beams, rods and trusses are common elements in structural and mechanical engineering, but recent advances in additive manufacturing now also enable efficient freeform fabrication of curved, deformable beams and beam structures, such as microstructures, metamaterials and conformal lattices. To exploit this new design freedom for applications with nonlinear mechanical behavior, we introduce an isogeometric method for shape optimization of curved 3D beams and beam structures. The geometrically exact Cosserat rod theory is used to model nonlinear 3D beams subject to large deformations and rotations. The initial and current geometry are parameterized in terms of NURBS curves describing the beam centerline and an isogeometric collocation approach is used to discretize the strong form of the balance equations. Then, a nonlinear optimization problem is formulated in order to optimize the positions of the control points of the NURBS curve that describes the beam centerline, i.e., the geometry or shape of the beam. To solve the design problem using gradient-based algorithms, we introduce semi-analytical, inconsistent analytical and fully analytical approaches for calculation of design sensitivities. The methods are numerically validated and their performance is investigated, before the applicability and versatility of our 3D beam shape optimization method is illustrated in various numerical applications, including optimization of an auxetic 3D metamaterial.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-198653
Zusätzliche Informationen:

Isogeometric analysis, Collocation method, Shape optimization, Nonlinear optimization, 3D beams, Geometrically exact beam theory

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 15 Dez 2021 13:48
Letzte Änderung: 16 Dez 2021 06:46
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen