TU Darmstadt / ULB / TUbiblio

Multiscale modelling of soft lattice metamaterials: micromechanical nonlinear buckling analysis, experimental verification, and macroscale constitutive behaviour

Jamshidian, Mostafa ; Boddeti, Narasimha ; Rosen, David W. ; Weeger, Oliver (2021)
Multiscale modelling of soft lattice metamaterials: micromechanical nonlinear buckling analysis, experimental verification, and macroscale constitutive behaviour.
In: International Journal of Mechanical Sciences, 2020, 188
doi: 10.26083/tuprints-00019870
Artikel, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Soft lattice structures and beam-metamaterials made of hyperelastic, rubbery materials undergo large elastic deformations and exhibit structural instabilities in the form of micro-buckling of struts under both compression and tension. In this work, the large-deformation nonlinear elastic behaviour of beam-lattice metamaterials is investigated by micromechanical nonlinear buckling analysis. The micromechanical 3D beam finite element model uses a primary linear buckling analysis to incorporate the effect of geometric imperfections into a subsequent nonlinear post-buckling analysis. The micromechanical computational model is validated against tensile and compressive experiments on a 3D-printed sample lattice structure manufactured via multi-material jetting. For the development and calibration of macroscale continuum constitutive models for nonlinear elastic deformation of soft lattice structures at finite strains, virtual characterization tests are conducted to quantify the effective nonlinear response of representative unit cells under periodic boundary conditions. These standard tests, commonly used for hyperelastic material characterization, include uniaxial, biaxial, planar and volumetric tension and compression, as well as simple shear. It is observed that besides the well-known stretch- and bending-dominated behaviour of cellular structures, some lattice types are dominated by buckling and post-buckling response. For multiscale simulation based on nonlinear homogenization, the uniaxial standard test results are used to derive parametric hyperelastic constitutive relations for the effective constitutive behaviour of representative unit cells in terms of lattice aspect ratio. Finally, a comparative study for compressive deformation of a sample sandwich lattice structure simulated by both full-scale beam and continuum finite element models shows the feasibility and computational efficiency of the effective continuum model.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Jamshidian, Mostafa ; Boddeti, Narasimha ; Rosen, David W. ; Weeger, Oliver
Art des Eintrags: Zweitveröffentlichung
Titel: Multiscale modelling of soft lattice metamaterials: micromechanical nonlinear buckling analysis, experimental verification, and macroscale constitutive behaviour
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Mechanical Sciences
Jahrgang/Volume einer Zeitschrift: 188
Kollation: 33 Seiten
DOI: 10.26083/tuprints-00019870
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19870
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Soft lattice structures and beam-metamaterials made of hyperelastic, rubbery materials undergo large elastic deformations and exhibit structural instabilities in the form of micro-buckling of struts under both compression and tension. In this work, the large-deformation nonlinear elastic behaviour of beam-lattice metamaterials is investigated by micromechanical nonlinear buckling analysis. The micromechanical 3D beam finite element model uses a primary linear buckling analysis to incorporate the effect of geometric imperfections into a subsequent nonlinear post-buckling analysis. The micromechanical computational model is validated against tensile and compressive experiments on a 3D-printed sample lattice structure manufactured via multi-material jetting. For the development and calibration of macroscale continuum constitutive models for nonlinear elastic deformation of soft lattice structures at finite strains, virtual characterization tests are conducted to quantify the effective nonlinear response of representative unit cells under periodic boundary conditions. These standard tests, commonly used for hyperelastic material characterization, include uniaxial, biaxial, planar and volumetric tension and compression, as well as simple shear. It is observed that besides the well-known stretch- and bending-dominated behaviour of cellular structures, some lattice types are dominated by buckling and post-buckling response. For multiscale simulation based on nonlinear homogenization, the uniaxial standard test results are used to derive parametric hyperelastic constitutive relations for the effective constitutive behaviour of representative unit cells in terms of lattice aspect ratio. Finally, a comparative study for compressive deformation of a sample sandwich lattice structure simulated by both full-scale beam and continuum finite element models shows the feasibility and computational efficiency of the effective continuum model.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-198704
Zusätzliche Informationen:

Lattice structures, Multiscale modelling, Micromechanics, Nonlinear buckling analysis, Hyperelastic constitutive model

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 15 Dez 2021 13:53
Letzte Änderung: 16 Dez 2021 06:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen