TU Darmstadt / ULB / TUbiblio

Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials

Fernández, Mauricio ; Jamshidian, Mostafa ; Böhlke, Thomas ; Kersting, Kristian ; Weeger, Oliver (2021)
Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials.
In: Computational Mechanics, 2021, 67
doi: 10.26083/tuprints-00019872
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

This work investigates the capabilities of anisotropic theory-based, purely data-driven and hybrid approaches to model the homogenized constitutive behavior of cubic lattice metamaterials exhibiting large deformations and buckling phenomena. The effective material behavior is assumed as hyperelastic, anisotropic and finite deformations are considered. A highly flexible analytical approach proposed by Itskov (Int J Numer Methods Eng 50(8): 1777–1799, 2001) is taken into account, which ensures material objectivity and fulfillment of the material symmetry group conditions. Then, two non-intrusive data-driven approaches are proposed, which are built upon artificial neural networks and formulated such that they also fulfill the objectivity and material symmetry conditions. Finally, a hybrid approach combing the approach of Itskov (Int J Numer Methods Eng 50(8): 1777–1799, 2001) with artificial neural networks is formulated. Here, all four models are calibrated with simulation data of the homogenization of two cubic lattice metamaterials at finite deformations. The data-driven models are able to reproduce the calibration data very well and reproduce the manifestation of lattice instabilities. Furthermore, they achieve superior accuracy over the analytical model also in additional test scenarios. The introduced hyperelastic models are formulated as general as possible, such that they can not only be used for lattice structures, but for any anisotropic hyperelastic material.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Fernández, Mauricio ; Jamshidian, Mostafa ; Böhlke, Thomas ; Kersting, Kristian ; Weeger, Oliver
Art des Eintrags: Zweitveröffentlichung
Titel: Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computational Mechanics
Jahrgang/Volume einer Zeitschrift: 67
DOI: 10.26083/tuprints-00019872
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19872
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

This work investigates the capabilities of anisotropic theory-based, purely data-driven and hybrid approaches to model the homogenized constitutive behavior of cubic lattice metamaterials exhibiting large deformations and buckling phenomena. The effective material behavior is assumed as hyperelastic, anisotropic and finite deformations are considered. A highly flexible analytical approach proposed by Itskov (Int J Numer Methods Eng 50(8): 1777–1799, 2001) is taken into account, which ensures material objectivity and fulfillment of the material symmetry group conditions. Then, two non-intrusive data-driven approaches are proposed, which are built upon artificial neural networks and formulated such that they also fulfill the objectivity and material symmetry conditions. Finally, a hybrid approach combing the approach of Itskov (Int J Numer Methods Eng 50(8): 1777–1799, 2001) with artificial neural networks is formulated. Here, all four models are calibrated with simulation data of the homogenization of two cubic lattice metamaterials at finite deformations. The data-driven models are able to reproduce the calibration data very well and reproduce the manifestation of lattice instabilities. Furthermore, they achieve superior accuracy over the analytical model also in additional test scenarios. The introduced hyperelastic models are formulated as general as possible, such that they can not only be used for lattice structures, but for any anisotropic hyperelastic material.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-198728
Zusätzliche Informationen:

Finite hyperelasticity, Anisotropy, Metamaterials, Data-driven modeling, Machine learning, Artificial neural networks

Further, access to the complete simulation data is provided through the public repository https://github.com/CPShub/sim-data.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 15 Dez 2021 10:37
Letzte Änderung: 16 Dez 2021 06:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen