TU Darmstadt / ULB / TUbiblio

Numerical homogenization of second gradient, linear elastic constitutive models for cubic 3D beam-lattice metamaterials

Weeger, Oliver (2021)
Numerical homogenization of second gradient, linear elastic constitutive models for cubic 3D beam-lattice metamaterials.
In: International Journal of Solids and Structures, 224
doi: 10.26083/tuprints-00019874
Artikel, Zweitveröffentlichung, Postprint

Kurzbeschreibung (Abstract)

Generalized continuum mechanical theories such as second gradient elasticity can consider size and localization effects, which motivates their use for multiscale modeling of periodic lattice structures and metamaterials. For this purpose, a numerical homogenization method for computing the effective second gradient constitutive models of cubic lattice metamaterials in the infinitesimal deformation regime is introduced here. Based on the modeling of lattice unit cells as shear-deformable 3D beam structures, the relationship between effective macroscopic strain and stress measures and the microscopic boundary deformations and rotations is derived. From this Hill–Mandel condition, admissible kinematic boundary conditions for the homogenization are concluded. The method is numerically verified and applied to various lattice unit cell types, where the influence of cell type, cell size and aspect ratio on the effective constitutive parameters of the linear elastic second gradient model is investigated and discussed. To facilitate their use in multiscale simulations with second gradient linear elasticity, these effective constitutive coefficients are parameterized in terms of the aspect ratio of the lattices structures.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Weeger, Oliver
Art des Eintrags: Zweitveröffentlichung
Titel: Numerical homogenization of second gradient, linear elastic constitutive models for cubic 3D beam-lattice metamaterials
Sprache: Englisch
Publikationsjahr: 2021
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Solids and Structures
Jahrgang/Volume einer Zeitschrift: 224
Kollation: 24 Seiten
DOI: 10.26083/tuprints-00019874
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19874
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Generalized continuum mechanical theories such as second gradient elasticity can consider size and localization effects, which motivates their use for multiscale modeling of periodic lattice structures and metamaterials. For this purpose, a numerical homogenization method for computing the effective second gradient constitutive models of cubic lattice metamaterials in the infinitesimal deformation regime is introduced here. Based on the modeling of lattice unit cells as shear-deformable 3D beam structures, the relationship between effective macroscopic strain and stress measures and the microscopic boundary deformations and rotations is derived. From this Hill–Mandel condition, admissible kinematic boundary conditions for the homogenization are concluded. The method is numerically verified and applied to various lattice unit cell types, where the influence of cell type, cell size and aspect ratio on the effective constitutive parameters of the linear elastic second gradient model is investigated and discussed. To facilitate their use in multiscale simulations with second gradient linear elasticity, these effective constitutive coefficients are parameterized in terms of the aspect ratio of the lattices structures.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-198743
Zusätzliche Informationen:

Numerical homogenization, Generalized continuum mechanics, Second gradient linear elasticity, Lattice metamaterials, Multiscale simulation

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 15 Dez 2021 13:58
Letzte Änderung: 16 Dez 2021 06:41
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen