Gärtner, Til ; Fernández, Mauricio ; Weeger, Oliver (2021)
Nonlinear multiscale simulation of elastic beam lattices with anisotropic homogenized constitutive models based on artificial neural networks.
In: Computational Mechanics, 2021, 68 (5)
doi: 10.26083/tuprints-00019875
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
A sequential nonlinear multiscale method for the simulation of elastic metamaterials subject to large deformations and instabilities is proposed. For the finite strain homogenization of cubic beam lattice unit cells, a stochastic perturbation approach is applied to induce buckling. Then, three variants of anisotropic effective constitutive models built upon artificial neural networks are trained on the homogenization data and investigated: one is hyperelastic and fulfills the material symmetry conditions by construction, while the other two are hyperelastic and elastic, respectively, and approximate the material symmetry through data augmentation based on strain energy densities and stresses. Finally, macroscopic nonlinear finite element simulations are conducted and compared to fully resolved simulations of a lattice structure. The good agreement between both approaches in tension and compression scenarios shows that the sequential multiscale approach based on anisotropic constitutive models can accurately reproduce the highly nonlinear behavior of buckling-driven 3D metamaterials at lesser computational effort.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Gärtner, Til ; Fernández, Mauricio ; Weeger, Oliver |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Nonlinear multiscale simulation of elastic beam lattices with anisotropic homogenized constitutive models based on artificial neural networks |
Sprache: | Englisch |
Publikationsjahr: | 2021 |
Publikationsdatum der Erstveröffentlichung: | 2021 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Computational Mechanics |
Jahrgang/Volume einer Zeitschrift: | 68 |
(Heft-)Nummer: | 5 |
DOI: | 10.26083/tuprints-00019875 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/19875 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | A sequential nonlinear multiscale method for the simulation of elastic metamaterials subject to large deformations and instabilities is proposed. For the finite strain homogenization of cubic beam lattice unit cells, a stochastic perturbation approach is applied to induce buckling. Then, three variants of anisotropic effective constitutive models built upon artificial neural networks are trained on the homogenization data and investigated: one is hyperelastic and fulfills the material symmetry conditions by construction, while the other two are hyperelastic and elastic, respectively, and approximate the material symmetry through data augmentation based on strain energy densities and stresses. Finally, macroscopic nonlinear finite element simulations are conducted and compared to fully resolved simulations of a lattice structure. The good agreement between both approaches in tension and compression scenarios shows that the sequential multiscale approach based on anisotropic constitutive models can accurately reproduce the highly nonlinear behavior of buckling-driven 3D metamaterials at lesser computational effort. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-198752 |
Zusätzliche Informationen: | Nonlinear multiscale simulation, Metamaterials, Constitutive modeling, Anisotropic hyperelasticity, Machine learning |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 500 Naturwissenschaften und Mathematik > 530 Physik 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS) |
Hinterlegungsdatum: | 14 Dez 2021 10:15 |
Letzte Änderung: | 15 Dez 2021 05:57 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Nonlinear multiscale simulation of elastic beam lattices with anisotropic homogenized constitutive models based on artificial neural networks. (deposited 14 Dez 2021 10:15) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |