TU Darmstadt / ULB / TUbiblio

Nonlinear multiscale simulation of elastic beam lattices with anisotropic homogenized constitutive models based on artificial neural networks

Gärtner, Til ; Fernández, Mauricio ; Weeger, Oliver (2021)
Nonlinear multiscale simulation of elastic beam lattices with anisotropic homogenized constitutive models based on artificial neural networks.
In: Computational Mechanics, 2021, 68 (5)
doi: 10.26083/tuprints-00019875
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

A sequential nonlinear multiscale method for the simulation of elastic metamaterials subject to large deformations and instabilities is proposed. For the finite strain homogenization of cubic beam lattice unit cells, a stochastic perturbation approach is applied to induce buckling. Then, three variants of anisotropic effective constitutive models built upon artificial neural networks are trained on the homogenization data and investigated: one is hyperelastic and fulfills the material symmetry conditions by construction, while the other two are hyperelastic and elastic, respectively, and approximate the material symmetry through data augmentation based on strain energy densities and stresses. Finally, macroscopic nonlinear finite element simulations are conducted and compared to fully resolved simulations of a lattice structure. The good agreement between both approaches in tension and compression scenarios shows that the sequential multiscale approach based on anisotropic constitutive models can accurately reproduce the highly nonlinear behavior of buckling-driven 3D metamaterials at lesser computational effort.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Gärtner, Til ; Fernández, Mauricio ; Weeger, Oliver
Art des Eintrags: Zweitveröffentlichung
Titel: Nonlinear multiscale simulation of elastic beam lattices with anisotropic homogenized constitutive models based on artificial neural networks
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computational Mechanics
Jahrgang/Volume einer Zeitschrift: 68
(Heft-)Nummer: 5
DOI: 10.26083/tuprints-00019875
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19875
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

A sequential nonlinear multiscale method for the simulation of elastic metamaterials subject to large deformations and instabilities is proposed. For the finite strain homogenization of cubic beam lattice unit cells, a stochastic perturbation approach is applied to induce buckling. Then, three variants of anisotropic effective constitutive models built upon artificial neural networks are trained on the homogenization data and investigated: one is hyperelastic and fulfills the material symmetry conditions by construction, while the other two are hyperelastic and elastic, respectively, and approximate the material symmetry through data augmentation based on strain energy densities and stresses. Finally, macroscopic nonlinear finite element simulations are conducted and compared to fully resolved simulations of a lattice structure. The good agreement between both approaches in tension and compression scenarios shows that the sequential multiscale approach based on anisotropic constitutive models can accurately reproduce the highly nonlinear behavior of buckling-driven 3D metamaterials at lesser computational effort.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-198752
Zusätzliche Informationen:

Nonlinear multiscale simulation, Metamaterials, Constitutive modeling, Anisotropic hyperelasticity, Machine learning

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
Hinterlegungsdatum: 14 Dez 2021 10:15
Letzte Änderung: 15 Dez 2021 05:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen