TU Darmstadt / ULB / TUbiblio

PW-MAD: Pixel-Wise Supervision for Generalized Face Morphing Attack Detection

Damer, Naser ; Spiller, Noémie ; Fang, Meiling ; Boutros, Fadi ; Kirchbuchner, Florian ; Kuijper, Arjan (2021)
PW-MAD: Pixel-Wise Supervision for Generalized Face Morphing Attack Detection.
16th International Symposium on Visual Computing. virtual Conference (04.10.2021-06.10.2021)
doi: 10.1007/978-3-030-90439-5_23
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

A face morphing attack image can be verified to multiple identities, making this attack a major vulnerability to processes based on identity verification, such as border checks. Various methods have been proposed to detect face morphing attacks, however, with low generalizability to unexpected post-morphing processes. A major post-morphing process is the print and scan operation performed in many countries when issuing a passport or identity document. In this work, we address this generalization problem by adapting a pixel-wise supervision approach where we train a network to classify each pixel of the image into an attack or not, rather than only having one label for the whole image. Our pixel-wise morphing attack detection (PW-MAD) solution proved to perform more accurately than a set of established baselines. More importantly, PW-MAD shows high generalizability in comparison to related works, when evaluated on unknown re-digitized attacks. Additionally to our PW-MAD approach, we create a new face morphing attack dataset with digital and re-digitized samples, namely the LMA-DRD dataset that is publicly available for research purposes upon request.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Damer, Naser ; Spiller, Noémie ; Fang, Meiling ; Boutros, Fadi ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: PW-MAD: Pixel-Wise Supervision for Generalized Face Morphing Attack Detection
Sprache: Englisch
Publikationsjahr: 2021
Verlag: Springer
Buchtitel: Advances in Visual Computing
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 13017
Veranstaltungstitel: 16th International Symposium on Visual Computing
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 04.10.2021-06.10.2021
DOI: 10.1007/978-3-030-90439-5_23
Kurzbeschreibung (Abstract):

A face morphing attack image can be verified to multiple identities, making this attack a major vulnerability to processes based on identity verification, such as border checks. Various methods have been proposed to detect face morphing attacks, however, with low generalizability to unexpected post-morphing processes. A major post-morphing process is the print and scan operation performed in many countries when issuing a passport or identity document. In this work, we address this generalization problem by adapting a pixel-wise supervision approach where we train a network to classify each pixel of the image into an attack or not, rather than only having one label for the whole image. Our pixel-wise morphing attack detection (PW-MAD) solution proved to perform more accurately than a set of established baselines. More importantly, PW-MAD shows high generalizability in comparison to related works, when evaluated on unknown re-digitized attacks. Additionally to our PW-MAD approach, we create a new face morphing attack dataset with digital and re-digitized samples, namely the LMA-DRD dataset that is publicly available for research purposes upon request.

Freie Schlagworte: Biometrics, Face recognition, Morphing attack, Deep learning, Machine learning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 10 Dez 2021 09:55
Letzte Änderung: 10 Dez 2021 09:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen