TU Darmstadt / ULB / TUbiblio

Self-trained CAD assistance for constraining assemblies based on decision trees and support vector classification

Dasbach, Thomas ; Lohr, Robin ; Muth, Florian ; Anderl, Reiner (2021)
Self-trained CAD assistance for constraining assemblies based on decision trees and support vector classification.
In: Procedia CIRP, 104
doi: 10.1016/j.procir.2021.11.322
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this publication a concept for a self-trained assistance is presented, which places a part, selected by the designer, into an assembly and fixates it with constrains. Therefor all selectable parts are classified by the assistance beforehand. In the process of developing the classification several algorithm were tested and compared regarding speed and precision. To place and constrain the parts, decision trees for supervised learning were arranged in a multi-step structure. Furthermore, the implementation in the CAD environment Fusion 360 as well as the limitations and potentials of the concept are discussed.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Dasbach, Thomas ; Lohr, Robin ; Muth, Florian ; Anderl, Reiner
Art des Eintrags: Bibliographie
Titel: Self-trained CAD assistance for constraining assemblies based on decision trees and support vector classification
Sprache: Englisch
Publikationsjahr: 2021
Verlag: Elsevier B.V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia CIRP
Jahrgang/Volume einer Zeitschrift: 104
DOI: 10.1016/j.procir.2021.11.322
URL / URN: https://www.sciencedirect.com/science/article/pii/S221282712...
Kurzbeschreibung (Abstract):

In this publication a concept for a self-trained assistance is presented, which places a part, selected by the designer, into an assembly and fixates it with constrains. Therefor all selectable parts are classified by the assistance beforehand. In the process of developing the classification several algorithm were tested and compared regarding speed and precision. To place and constrain the parts, decision trees for supervised learning were arranged in a multi-step structure. Furthermore, the implementation in the CAD environment Fusion 360 as well as the limitations and potentials of the concept are discussed.

Freie Schlagworte: CAD, Machine Learning, SVC, Decision Trees, Assembly
Zusätzliche Informationen:

Part of special issue: 54th CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Datenverarbeitung in der Konstruktion (DiK) (ab 01.09.2022 umbenannt in "Product Life Cycle Management")
Hinterlegungsdatum: 09 Dez 2021 06:16
Letzte Änderung: 09 Dez 2021 06:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen