TU Darmstadt / ULB / TUbiblio

Automated Design of Robust Genetic Circuits: Structural Variants and Parameter Uncertainty

Schladt, T. ; Engelmann, N. ; Kubaczka, E. ; Hochberger, C. ; Koeppl, H. (2021)
Automated Design of Robust Genetic Circuits: Structural Variants and Parameter Uncertainty.
In: ACS Synthetic Biology, 2021, 10
doi: 10.1021/acssynbio.1c00193
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Genetic design automation methods for combinational circuits often rely on standard algorithms from electronic design automation in their circuit synthesis and technology mapping. However, those algorithms are domain-specific and are hence often not directly suitable for the biological context. In this work we identify aspects of those algorithms that require domain-adaptation. We first demonstrate that enumerating structural variants for a given Boolean specification allows us to find better performing circuits and that stochastic gate assignment methods need to be properly adjusted in order to find the best assignment. Second, we present a general circuit scoring scheme that accounts for the limited accuracy of biological device models including the variability across cells and show that circuits selected according to this score exhibit higher robustness with respect to parametric variations. If gate characteristics in a library are just given in terms of intervals, we provide means to efficiently propagate signals through such a circuit and compute corresponding scores. We demonstrate the novel design approach using the Cello gate library and 33 logic functions that were synthesized and implemented in vivo recently (Nielsen, A., et al., Science, 2016, 352 (6281), DOI: 10.1126/science.aac7341). Across this set of functions, 32 of them can be improved by simply considering structural variants yielding performance gains of up to 7.9-fold, whereas 22 of them can be improved with gains up to 26-fold when selecting circuits according to the novel robustness score. We furthermore report on the synergistic combination of the two proposed improvements.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Schladt, T. ; Engelmann, N. ; Kubaczka, E. ; Hochberger, C. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Automated Design of Robust Genetic Circuits: Structural Variants and Parameter Uncertainty
Sprache: Englisch
Publikationsjahr: 22 November 2021
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Washington, DC
Verlag: ACS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Synthetic Biology
Jahrgang/Volume einer Zeitschrift: 10
DOI: 10.1021/acssynbio.1c00193
URL / URN: https://pubs.acs.org/doi/abs/10.1021/acssynbio.1c00193
Zugehörige Links:
Kurzbeschreibung (Abstract):

Genetic design automation methods for combinational circuits often rely on standard algorithms from electronic design automation in their circuit synthesis and technology mapping. However, those algorithms are domain-specific and are hence often not directly suitable for the biological context. In this work we identify aspects of those algorithms that require domain-adaptation. We first demonstrate that enumerating structural variants for a given Boolean specification allows us to find better performing circuits and that stochastic gate assignment methods need to be properly adjusted in order to find the best assignment. Second, we present a general circuit scoring scheme that accounts for the limited accuracy of biological device models including the variability across cells and show that circuits selected according to this score exhibit higher robustness with respect to parametric variations. If gate characteristics in a library are just given in terms of intervals, we provide means to efficiently propagate signals through such a circuit and compute corresponding scores. We demonstrate the novel design approach using the Cello gate library and 33 logic functions that were synthesized and implemented in vivo recently (Nielsen, A., et al., Science, 2016, 352 (6281), DOI: 10.1126/science.aac7341). Across this set of functions, 32 of them can be improved by simply considering structural variants yielding performance gains of up to 7.9-fold, whereas 22 of them can be improved with gains up to 26-fold when selecting circuits according to the novel robustness score. We furthermore report on the synergistic combination of the two proposed improvements.

Freie Schlagworte: genetic design automation, synthetic biology, circuit synthesis, structural variants, cell-to-cell variability, robust genetic circuit
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Rechnersysteme
Hinterlegungsdatum: 29 Nov 2021 09:53
Letzte Änderung: 17 Mai 2024 10:19
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen