TU Darmstadt / ULB / TUbiblio

Piezotronic effect at Schottky barrier of a metal-ZnO single crystal interface

Keil, Peter ; Frömling, Till ; Klein, Andreas ; Rödel, Jürgen ; Novak, Nikola (2021)
Piezotronic effect at Schottky barrier of a metal-ZnO single crystal interface.
In: Journal of Applied Physics, 2017, 121 (15)
doi: 10.26083/tuprints-00019952
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

ZnO is considered as one of the most promising semiconductor materials for future applications based on the piezotronic effect. Intense studies on ZnO nanowires had been carried out to understand the modulation of the Schottky barrier height at the metal ZnO interface via piezoelectricity. However, an experimental investigation on bulk ZnO single crystals and a fundamental comparison of the modification of the barrier height determined experimentally and theoretically are still missing. Therefore, an adjustment of the electrostatic potential barrier height at metal-ZnO single crystal interfaces due to stress induced piezoelectric charges was conducted, using both O- and Zn-terminated surfaces. In-situ stress dependent impedance and current-voltage measurements were utilized to extract the electrical properties of the potential barrier and to determine the reduction of the barrier height. The decrease of the interface resistance and increase of the capacitance reveal the presence of stress induced piezoelectric charges. The experimentally evaluated reduction of the barrier height reveals a moderate change of about 9 meV at 70 MPa and supports prior work on metal-ZnO nanowires. This change was found to be in good agreement with theoretical calculations based on the imperfect screening model if a thickness of the interface layer is assumed to be ~2 Å.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Keil, Peter ; Frömling, Till ; Klein, Andreas ; Rödel, Jürgen ; Novak, Nikola
Art des Eintrags: Zweitveröffentlichung
Titel: Piezotronic effect at Schottky barrier of a metal-ZnO single crystal interface
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2017
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Physics
Jahrgang/Volume einer Zeitschrift: 121
(Heft-)Nummer: 15
Kollation: 5 Seiten
DOI: 10.26083/tuprints-00019952
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19952
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

ZnO is considered as one of the most promising semiconductor materials for future applications based on the piezotronic effect. Intense studies on ZnO nanowires had been carried out to understand the modulation of the Schottky barrier height at the metal ZnO interface via piezoelectricity. However, an experimental investigation on bulk ZnO single crystals and a fundamental comparison of the modification of the barrier height determined experimentally and theoretically are still missing. Therefore, an adjustment of the electrostatic potential barrier height at metal-ZnO single crystal interfaces due to stress induced piezoelectric charges was conducted, using both O- and Zn-terminated surfaces. In-situ stress dependent impedance and current-voltage measurements were utilized to extract the electrical properties of the potential barrier and to determine the reduction of the barrier height. The decrease of the interface resistance and increase of the capacitance reveal the presence of stress induced piezoelectric charges. The experimentally evaluated reduction of the barrier height reveals a moderate change of about 9 meV at 70 MPa and supports prior work on metal-ZnO nanowires. This change was found to be in good agreement with theoretical calculations based on the imperfect screening model if a thickness of the interface layer is assumed to be ~2 Å.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-199523
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 18 Nov 2021 10:43
Letzte Änderung: 19 Nov 2021 06:59
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen