TU Darmstadt / ULB / TUbiblio

Upcycling Waste Plastics into Multi-Walled Carbon Nanotube Composites via NiCo2O4 Catalytic Pyrolysis

Liu, Xingmin ; Xie, Wenjie ; Widenmeyer, Marc ; Ding, Hui ; Chen, Guoxing ; De Carolis, Dario M. ; Lakus-Wollny, Kerstin ; Molina-Luna, Leopoldo ; Riedel, Ralf ; Weidenkaff, Anke (2021)
Upcycling Waste Plastics into Multi-Walled Carbon Nanotube Composites via NiCo2O4 Catalytic Pyrolysis.
In: Catalysts, 11 (11)
doi: 10.3390/catal11111353
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this work, multi-walled carbon nanotube composites (MWCNCs) were produced by catalytic pyrolysis of post-consumer plastics with aluminium oxide-supported nickel, cobalt, and their bimetallic (Ni/α–Al2O3, Co/α–Al2O3, and NiCo/α–Al2O3) oxide-based catalysts. The influence of catalyst composition and catalytic reaction temperature on the carbon yield and structure of CNCs were investigated. Different temperatures (800, 900, 950, and 1000 °C) and catalyst compositions (Ni, Co, and Ni/Co) were explored to maximize the yield of carbon deposited on the catalyst. The obtained results showed that at the same catalytic temperature (900 °C), a Ni/Co bimetallic catalyst exhibited higher carbon yield than the individual monometallic catalysts due to a better cracking capability on carbon-hydrogen bonds. With the increase of temperature, the carbon yield of the Ni/Co bimetallic catalyst increased first and then decreased. At a temperature of 950 °C, the Ni/Co bimetallic catalyst achieved its largest carbon yield, which can reach 255 mg g–1plastic. The growth of CNCs followed a “particle-wire-tube” mechanism for all studied catalysts. This work finds the potential application of complex oxide composite material catalysts for the generation of CNCs in catalytic pyrolysis of wasted plastic.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Liu, Xingmin ; Xie, Wenjie ; Widenmeyer, Marc ; Ding, Hui ; Chen, Guoxing ; De Carolis, Dario M. ; Lakus-Wollny, Kerstin ; Molina-Luna, Leopoldo ; Riedel, Ralf ; Weidenkaff, Anke
Art des Eintrags: Bibliographie
Titel: Upcycling Waste Plastics into Multi-Walled Carbon Nanotube Composites via NiCo2O4 Catalytic Pyrolysis
Sprache: Englisch
Publikationsjahr: 11 November 2021
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Catalysts
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 11
DOI: 10.3390/catal11111353
URL / URN: https://www.mdpi.com/2073-4344/11/11/1353
Kurzbeschreibung (Abstract):

In this work, multi-walled carbon nanotube composites (MWCNCs) were produced by catalytic pyrolysis of post-consumer plastics with aluminium oxide-supported nickel, cobalt, and their bimetallic (Ni/α–Al2O3, Co/α–Al2O3, and NiCo/α–Al2O3) oxide-based catalysts. The influence of catalyst composition and catalytic reaction temperature on the carbon yield and structure of CNCs were investigated. Different temperatures (800, 900, 950, and 1000 °C) and catalyst compositions (Ni, Co, and Ni/Co) were explored to maximize the yield of carbon deposited on the catalyst. The obtained results showed that at the same catalytic temperature (900 °C), a Ni/Co bimetallic catalyst exhibited higher carbon yield than the individual monometallic catalysts due to a better cracking capability on carbon-hydrogen bonds. With the increase of temperature, the carbon yield of the Ni/Co bimetallic catalyst increased first and then decreased. At a temperature of 950 °C, the Ni/Co bimetallic catalyst achieved its largest carbon yield, which can reach 255 mg g–1plastic. The growth of CNCs followed a “particle-wire-tube” mechanism for all studied catalysts. This work finds the potential application of complex oxide composite material catalysts for the generation of CNCs in catalytic pyrolysis of wasted plastic.

Freie Schlagworte: wasted plastic, carbon nanotube composites, Ni/Co catalyst, “particle-wire-tube” mechanism
Zusätzliche Informationen:

This research was funded by German Federal Ministry of Education and Research within the NexPlas project (project number: 03SF0618B). The APC was funded by the Deutsche Forschungsgemeinschaft (DFG—German research Foundation) and the Open Access Publishing Fund of the Technical University of Darmstadt. M.W. and A.W. highly acknowledge the funding by the German Federal Ministry of Education and Research within the NexPlas project (project number: 03SF0618B).

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 12 Nov 2021 07:47
Letzte Änderung: 15 Nov 2021 07:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen