TU Darmstadt / ULB / TUbiblio

Interface Behaviour and Work Function Modification of Self-Assembled Monolayers on Sn-Doped In₂O₃

Hubmann, Andreas ; Dietz, Dominik ; Brötz, Joachim ; Klein, Andreas (2021)
Interface Behaviour and Work Function Modification of Self-Assembled Monolayers on Sn-Doped In₂O₃.
In: Surfaces, 2019, 2 (2)
doi: 10.26083/tuprints-00019795
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The modification of the work function of Sn-doped In₂O₃ (ITO) by vacuum adsorption of 4-(Dimethylamino)benzoic acid (4-DMABA) has been studied using in situ photoelectron spectroscopy. Adsorption of 4-DMABA is self-limited with an approximate thickness of a single monolayer. The lowest work function obtained is 2.82±0.1 eV, enabling electron injection into many organic materials. In order to identify a potential influence of the ITO substrate surface on the final work function, different ITO surface orientations and treatments have been applied. Despite the expected differences in substrate work function and chemical bonding of 4-DMABA to the substrate, no influence of substrate surface orientation is identified. The resulting work function of ITO/4-DMABA substrates can be described by a constant ionization potential of the adsorbed 4-DMABA of 5.00±0.08 eV, a constant band alignment between ITO and 4-DMABA and a varying Fermi energy in the ITO substrate. This corresponds to the behaviour of a conventional semiconductor heterostructure and deviates from the vacuum level alignment of interfaces between organic compounds. The difference is likely related to a stronger chemical bonding at the ITO/4-DMABA interface compared to the van der Waals bonding at interfaces between organic compounds.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Hubmann, Andreas ; Dietz, Dominik ; Brötz, Joachim ; Klein, Andreas
Art des Eintrags: Zweitveröffentlichung
Titel: Interface Behaviour and Work Function Modification of Self-Assembled Monolayers on Sn-Doped In₂O₃
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2019
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Surfaces
Jahrgang/Volume einer Zeitschrift: 2
(Heft-)Nummer: 2
DOI: 10.26083/tuprints-00019795
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19795
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

The modification of the work function of Sn-doped In₂O₃ (ITO) by vacuum adsorption of 4-(Dimethylamino)benzoic acid (4-DMABA) has been studied using in situ photoelectron spectroscopy. Adsorption of 4-DMABA is self-limited with an approximate thickness of a single monolayer. The lowest work function obtained is 2.82±0.1 eV, enabling electron injection into many organic materials. In order to identify a potential influence of the ITO substrate surface on the final work function, different ITO surface orientations and treatments have been applied. Despite the expected differences in substrate work function and chemical bonding of 4-DMABA to the substrate, no influence of substrate surface orientation is identified. The resulting work function of ITO/4-DMABA substrates can be described by a constant ionization potential of the adsorbed 4-DMABA of 5.00±0.08 eV, a constant band alignment between ITO and 4-DMABA and a varying Fermi energy in the ITO substrate. This corresponds to the behaviour of a conventional semiconductor heterostructure and deviates from the vacuum level alignment of interfaces between organic compounds. The difference is likely related to a stronger chemical bonding at the ITO/4-DMABA interface compared to the van der Waals bonding at interfaces between organic compounds.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-197957
Zusätzliche Informationen:

Keywords: ITO; work function; self-assembled monolayer; band alignment

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenstruktur von Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung
Hinterlegungsdatum: 29 Okt 2021 12:22
Letzte Änderung: 01 Nov 2021 07:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen