TU Darmstadt / ULB / TUbiblio

Extended Successive Convex Approximation for Phase Retrieval with Dictionary Learning

Liu, Tianyi ; Tillmann, Andreas M. ; Yang, Yang ; Eldar, Yonina C. ; Pesavento, Marius (2021)
Extended Successive Convex Approximation for Phase Retrieval with Dictionary Learning.
Report, Bibliographie

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Phase retrieval aims at recovering unknown signals from magnitude measurements of linear mixtures. In this paper, we consider the phase retrieval with dictionary learning problem, which includes another prior information that the signal admits a sparse representation over an unknown dictionary. The task is to jointly estimate the dictionary and the sparse representation from magnitude-only measurements. To this end, we study two complementary formulations and develop efficient parallel algorithms by extending the successive convex approximation framework using a smooth majorization. The first algorithm is termed compactSCAphase and is preferable in the case of moderately diverse mixture models with a low number of mixing components. It adopts a compact formulation that avoids auxiliary variables. The proposed algorithm is highly scalable and has reduced parameter tuning cost. The second algorithm, referred to as SCAphase, uses auxiliary variables and is favorable in the case of highly diverse mixture models. It also renders simple incorporation of additional side constraints. The performance of both methods is evaluated when applied to blind channel estimation from subband magnitude measurements in a multi-antenna random access network. Simulation results show the efficiency of the proposed techniques compared to state-of-the-art methods.

Typ des Eintrags: Report
Erschienen: 2021
Autor(en): Liu, Tianyi ; Tillmann, Andreas M. ; Yang, Yang ; Eldar, Yonina C. ; Pesavento, Marius
Art des Eintrags: Bibliographie
Titel: Extended Successive Convex Approximation for Phase Retrieval with Dictionary Learning
Sprache: Englisch
Publikationsjahr: 25 Dezember 2021
Verlag: arXiv
Reihe: Electrical Engineering and Systems Science
Kollation: 17 Seiten
Auflage: 1. Auflage
URL / URN: https://arxiv.org/abs/2109.05646
Zugehörige Links:
Kurzbeschreibung (Abstract):

Phase retrieval aims at recovering unknown signals from magnitude measurements of linear mixtures. In this paper, we consider the phase retrieval with dictionary learning problem, which includes another prior information that the signal admits a sparse representation over an unknown dictionary. The task is to jointly estimate the dictionary and the sparse representation from magnitude-only measurements. To this end, we study two complementary formulations and develop efficient parallel algorithms by extending the successive convex approximation framework using a smooth majorization. The first algorithm is termed compactSCAphase and is preferable in the case of moderately diverse mixture models with a low number of mixing components. It adopts a compact formulation that avoids auxiliary variables. The proposed algorithm is highly scalable and has reduced parameter tuning cost. The second algorithm, referred to as SCAphase, uses auxiliary variables and is favorable in the case of highly diverse mixture models. It also renders simple incorporation of additional side constraints. The performance of both methods is evaluated when applied to blind channel estimation from subband magnitude measurements in a multi-antenna random access network. Simulation results show the efficiency of the proposed techniques compared to state-of-the-art methods.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme
Hinterlegungsdatum: 25 Okt 2021 10:29
Letzte Änderung: 19 Dez 2024 10:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen