Weigler, Max ; Brodrecht, Martin ; Breitzke, Hergen ; Dietrich, Felix ; Sattig, Matthias ; Buntkowsky, Gerd ; Vogel, Michael (2021)
²H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica.
In: Zeitschrift für Physikalische Chemie, 2018, 232 (7-8)
doi: 10.26083/tuprints-00019684
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Mesoporous silica MCM-41 is prepared, for which the inner surfaces are modified by 3-(aminopropyl)triethoxysilane (APTES) in a controlled manner. Nitrogen gas adsorpition yields a pore diameter of 2.2 nm for the APTES functionalized MCM-41. ²H nuclear magnetic resonance (NMR) and broadband dielectric spectroscopy (BDS) provide detailed and consistent insights into the temperature-dependent reorientation dynamics of water in this confinement. We find that a liquid water species becomes accompanied by a solid water species when cooling through ~210 K, as indicated by an onset of bimodal Mesoporous silica MCM-41 is prepared, for which the inner surfaces are modified by 3-(aminopropyl)triethoxysilane (APTES) in a controlled manner. Nitrogen gas adsorpition yields a pore diameter of 2.2 nm for the APTES functionalized MCM-41. ²H nuclear magnetic resonance (NMR) and broadband dielectric spectroscopy (BDS) provide detailed and consistent insights into the temperature-dependent reorientation dynamics of water in this confinement. We find that a liquid water species becomes accompanied by a solid water species when cooling through ~210 K, as indicated by an onset of bimodal ²H spin-lattice relaxation. The reorientation of the liquid water species is governed by pronounced dynamical heterogeneity in the whole temperature range. Its temperature dependence shows a mild dynamic crossover when the solid water species emerges and, hence, the volume accessible to the liquid water species further shrinks. Therefore, we attribute this variation in the temperature dependence to a change from bulk-like behavior towards interface-dominated dynamics. Below this dynamic crossover, ²H line-shape and stimulted-echo studies show that water reorientation becomes anisotropic upon cooling, suggesting that these NMR approaches, but also BDS measurements do no longer probe the structural (α) relaxation, but rather a secondary (β) relaxation of water at sufficiently low temperatures. Then, another dynamic crossover at ~180 K can be rationalized in terms of a change of the temperature dependence of the β relaxation in response to a glassy freezing of the α relaxation of confined water. Comparing these results for APTES modied MCM-41 with previous findings for mesoporous silica with various pore diameters, we obtain valuable information about the dependence of water dynamics in restricted geometries on the size of the nanoscopic confinements and the properties of the inner surfaces. ²H spin-lattice relaxation. The reorientation of the liquid water species is governed by pronounced dynamical heterogeneity in the whole temperature range. Its temperature dependence shows a mild dynamic crossover when the solid water species emerges and, hence, the volume accessible to the liquid water species further shrinks. Therefore, we attribute this variation in the temperature dependence to a change from bulk-like behavior towards interface-dominated dynamics. Below this dynamic crossover, ²H line-shape and stimulted-echo studies show that water reorientation becomes anisotropic upon cooling, suggesting that these NMR approaches, but also BDS measurements do no longer probe the structural (α) relaxation, but rather a secondary (β) relaxation of water at sufficiently low temperatures. Then, another dynamic crossover at ~180 K can be rationalized in terms of a change of the temperature dependence of the β relaxation in response to a glassy freezing of the α relaxation of confined water. Comparing these results for APTES modied MCM-41 with previous findings for mesoporous silica with various pore diameters, we obtain valuable information about the dependence of water dynamics in restricted geometries on the size of the nanoscopic confinements and the properties of the inner surfaces.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Weigler, Max ; Brodrecht, Martin ; Breitzke, Hergen ; Dietrich, Felix ; Sattig, Matthias ; Buntkowsky, Gerd ; Vogel, Michael |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | ²H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica |
Sprache: | Englisch |
Publikationsjahr: | 2021 |
Publikationsdatum der Erstveröffentlichung: | 2018 |
Verlag: | De Gruyter |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Zeitschrift für Physikalische Chemie |
Jahrgang/Volume einer Zeitschrift: | 232 |
(Heft-)Nummer: | 7-8 |
DOI: | 10.26083/tuprints-00019684 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/19684 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Mesoporous silica MCM-41 is prepared, for which the inner surfaces are modified by 3-(aminopropyl)triethoxysilane (APTES) in a controlled manner. Nitrogen gas adsorpition yields a pore diameter of 2.2 nm for the APTES functionalized MCM-41. ²H nuclear magnetic resonance (NMR) and broadband dielectric spectroscopy (BDS) provide detailed and consistent insights into the temperature-dependent reorientation dynamics of water in this confinement. We find that a liquid water species becomes accompanied by a solid water species when cooling through ~210 K, as indicated by an onset of bimodal Mesoporous silica MCM-41 is prepared, for which the inner surfaces are modified by 3-(aminopropyl)triethoxysilane (APTES) in a controlled manner. Nitrogen gas adsorpition yields a pore diameter of 2.2 nm for the APTES functionalized MCM-41. ²H nuclear magnetic resonance (NMR) and broadband dielectric spectroscopy (BDS) provide detailed and consistent insights into the temperature-dependent reorientation dynamics of water in this confinement. We find that a liquid water species becomes accompanied by a solid water species when cooling through ~210 K, as indicated by an onset of bimodal ²H spin-lattice relaxation. The reorientation of the liquid water species is governed by pronounced dynamical heterogeneity in the whole temperature range. Its temperature dependence shows a mild dynamic crossover when the solid water species emerges and, hence, the volume accessible to the liquid water species further shrinks. Therefore, we attribute this variation in the temperature dependence to a change from bulk-like behavior towards interface-dominated dynamics. Below this dynamic crossover, ²H line-shape and stimulted-echo studies show that water reorientation becomes anisotropic upon cooling, suggesting that these NMR approaches, but also BDS measurements do no longer probe the structural (α) relaxation, but rather a secondary (β) relaxation of water at sufficiently low temperatures. Then, another dynamic crossover at ~180 K can be rationalized in terms of a change of the temperature dependence of the β relaxation in response to a glassy freezing of the α relaxation of confined water. Comparing these results for APTES modied MCM-41 with previous findings for mesoporous silica with various pore diameters, we obtain valuable information about the dependence of water dynamics in restricted geometries on the size of the nanoscopic confinements and the properties of the inner surfaces. ²H spin-lattice relaxation. The reorientation of the liquid water species is governed by pronounced dynamical heterogeneity in the whole temperature range. Its temperature dependence shows a mild dynamic crossover when the solid water species emerges and, hence, the volume accessible to the liquid water species further shrinks. Therefore, we attribute this variation in the temperature dependence to a change from bulk-like behavior towards interface-dominated dynamics. Below this dynamic crossover, ²H line-shape and stimulted-echo studies show that water reorientation becomes anisotropic upon cooling, suggesting that these NMR approaches, but also BDS measurements do no longer probe the structural (α) relaxation, but rather a secondary (β) relaxation of water at sufficiently low temperatures. Then, another dynamic crossover at ~180 K can be rationalized in terms of a change of the temperature dependence of the β relaxation in response to a glassy freezing of the α relaxation of confined water. Comparing these results for APTES modied MCM-41 with previous findings for mesoporous silica with various pore diameters, we obtain valuable information about the dependence of water dynamics in restricted geometries on the size of the nanoscopic confinements and the properties of the inner surfaces. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-196843 |
Zusätzliche Informationen: | Keywords: confined water; ²H NMR; mesoporous silica |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 540 Chemie |
Fachbereich(e)/-gebiet(e): | 07 Fachbereich Chemie 07 Fachbereich Chemie > Eduard Zintl-Institut 07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie |
Hinterlegungsdatum: | 01 Okt 2021 11:25 |
Letzte Änderung: | 03 Jul 2024 02:31 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- ²H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica. (deposited 01 Okt 2021 11:25) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |