TU Darmstadt / ULB / TUbiblio

Implicit Generative Copulas

Janke, Tim ; Ghanmi, Mohamed ; Steinke, Florian (2021)
Implicit Generative Copulas.
35th International Conference on Neural Information Processing Systems (NeurIPS 2021). virtual Conference (07.12.2021-10.12.2021)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Copulas are a powerful tool for modeling multivariate distributions as they allow to separately estimate the univariate marginal distributions and the joint dependency structure. However, known parametric copulas offer limited flexibility especially in high dimensions, while commonly used non-parametric methods suffer from the curse of dimensionality. A popular remedy is to construct a tree-based hierarchy of conditional bivariate copulas.In this paper, we propose a flexible, yet conceptually simple alternative based on implicit generative neural networks.The key challenge is to ensure marginal uniformity of the estimated copula distribution.We achieve this by learning a multivariate latent distribution with unspecified marginals but the desired dependency structure.By applying the probability integral transform, we can then obtain samples from the high-dimensional copula distribution without relying on parametric assumptions or the need to find a suitable tree structure.Experiments on synthetic and real data from finance, physics, and image generation demonstrate the performance of this approach.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Janke, Tim ; Ghanmi, Mohamed ; Steinke, Florian
Art des Eintrags: Bibliographie
Titel: Implicit Generative Copulas
Sprache: Englisch
Publikationsjahr: 2021
Kollation: 16 Seiten
Veranstaltungstitel: 35th International Conference on Neural Information Processing Systems (NeurIPS 2021)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 07.12.2021-10.12.2021
URL / URN: http://arxiv.org/abs/2109.14567
Zugehörige Links:
Kurzbeschreibung (Abstract):

Copulas are a powerful tool for modeling multivariate distributions as they allow to separately estimate the univariate marginal distributions and the joint dependency structure. However, known parametric copulas offer limited flexibility especially in high dimensions, while commonly used non-parametric methods suffer from the curse of dimensionality. A popular remedy is to construct a tree-based hierarchy of conditional bivariate copulas.In this paper, we propose a flexible, yet conceptually simple alternative based on implicit generative neural networks.The key challenge is to ensure marginal uniformity of the estimated copula distribution.We achieve this by learning a multivariate latent distribution with unspecified marginals but the desired dependency structure.By applying the probability integral transform, we can then obtain samples from the high-dimensional copula distribution without relying on parametric assumptions or the need to find a suitable tree structure.Experiments on synthetic and real data from finance, physics, and image generation demonstrate the performance of this approach.

Freie Schlagworte: emergenCITY_CPS
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Energieinformationsnetze und Systeme (EINS)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Forschungsfelder
Forschungsfelder > Energy and Environment
Forschungsfelder > Energy and Environment > Integrated Energy Systems
TU-Projekte: HMWK|III L6-519/03/05.001-(0016)|emergenCity TP Bock
Hinterlegungsdatum: 04 Okt 2021 10:35
Letzte Änderung: 19 Dez 2024 10:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen