TU Darmstadt / ULB / TUbiblio

Sensing Molecules with Metal–Organic Framework Functionalized Graphene Transistors

Kumar, Sandeep ; Pramudya, Yohanes ; Müller, Kai ; Chandresh, Abhinav ; Dehm, Simone ; Heidrich, Shahriar ; Fediai, Artem ; Parmar, Devang ; Perera, Delwin ; Rommel, Manuel ; Heinke, Lars ; Wenzel, Wolfgang ; Wöll, Christof ; Krupke, Ralph (2021)
Sensing Molecules with Metal–Organic Framework Functionalized Graphene Transistors.
In: Advanced Materials, 33 (43)
doi: 10.1002/adma.202103316
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Graphene is inherently sensitive to vicinal dielectrics and local charge distributions, a property that can be probed by the position of the Dirac point in graphene field-effect transistors. Exploiting this as a useful sensing principle requires selectivity; however, graphene itself exhibits no molecule-specific interaction. Complementarily, metal–organic frameworks can be tailored to selective adsorption of specific molecular species. Here, a selective ethanol sensor is demonstrated by growing a surface-mounted metal–organic framework (SURMOF) directly onto graphene field-effect transistors (GFETs). Unprecedented shifts of the Dirac point, as large as 15 V, are observed when the SURMOF/GFET is exposed to ethanol, while a vanishingly small response is observed for isopropanol, methanol, and other constituents of the air, including water. The synthesis and conditioning of the hybrid materials sensor with its functional characteristics are described and a model is proposed to explain the origin, magnitude, and direction of the Dirac point voltage shift. Tailoring multiple SURMOFs to adsorb specific gases on an array of such devices thus generates a versatile, selective, and highly sensitive platform for sensing applications.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Kumar, Sandeep ; Pramudya, Yohanes ; Müller, Kai ; Chandresh, Abhinav ; Dehm, Simone ; Heidrich, Shahriar ; Fediai, Artem ; Parmar, Devang ; Perera, Delwin ; Rommel, Manuel ; Heinke, Lars ; Wenzel, Wolfgang ; Wöll, Christof ; Krupke, Ralph
Art des Eintrags: Bibliographie
Titel: Sensing Molecules with Metal–Organic Framework Functionalized Graphene Transistors
Sprache: Englisch
Publikationsjahr: 8 September 2021
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials
Jahrgang/Volume einer Zeitschrift: 33
(Heft-)Nummer: 43
Kollation: 12 Seiten
DOI: 10.1002/adma.202103316
URL / URN: https://onlinelibrary.wiley.com/doi/10.1002/adma.202103316
Zugehörige Links:
Kurzbeschreibung (Abstract):

Graphene is inherently sensitive to vicinal dielectrics and local charge distributions, a property that can be probed by the position of the Dirac point in graphene field-effect transistors. Exploiting this as a useful sensing principle requires selectivity; however, graphene itself exhibits no molecule-specific interaction. Complementarily, metal–organic frameworks can be tailored to selective adsorption of specific molecular species. Here, a selective ethanol sensor is demonstrated by growing a surface-mounted metal–organic framework (SURMOF) directly onto graphene field-effect transistors (GFETs). Unprecedented shifts of the Dirac point, as large as 15 V, are observed when the SURMOF/GFET is exposed to ethanol, while a vanishingly small response is observed for isopropanol, methanol, and other constituents of the air, including water. The synthesis and conditioning of the hybrid materials sensor with its functional characteristics are described and a model is proposed to explain the origin, magnitude, and direction of the Dirac point voltage shift. Tailoring multiple SURMOFs to adsorb specific gases on an array of such devices thus generates a versatile, selective, and highly sensitive platform for sensing applications.

Zusätzliche Informationen:

Paper 2103316

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Molekulare Nanostrukturen
Hinterlegungsdatum: 01 Okt 2021 06:32
Letzte Änderung: 12 Dez 2023 09:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen