TU Darmstadt / ULB / TUbiblio

Variational Inference for Continuous-Time Switching Dynamical Systems

Köhs, L. ; Alt, B. ; Koeppl, H. (2021)
Variational Inference for Continuous-Time Switching Dynamical Systems.
35th Conference on Neural Information Processing Systems. virtual Conference (06.12.2021-14.12.2021)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Switching dynamical systems provide a powerful, interpretable modeling framework for inference in time-series data in, e.g., the natural sciences or engineering applications. Since many areas, such as biology or discrete-event systems, are naturally described in continuous time, we present a model based on a Markov jump process modulating a subordinated diffusion process. We provide the exact evolution equations for the prior and posterior marginal densities, the direct solutions of which are however computationally intractable. Therefore, we develop a new continuous-time variational inference algorithm, combining a Gaussian process approximation on the diffusion level with posterior inference for Markov jump processes. By minimizing the path-wise Kullback-Leibler divergence we obtain (i) Bayesian latent state estimates for arbitrary points on the real axis and(ii) point estimates of unknown system parameters, utilizing variational expectation maximization. We extensively evaluate our algorithm under the model assumption and for real-world examples.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Köhs, L. ; Alt, B. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Variational Inference for Continuous-Time Switching Dynamical Systems
Sprache: Englisch
Publikationsjahr: 29 September 2021
Veranstaltungstitel: 35th Conference on Neural Information Processing Systems
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 06.12.2021-14.12.2021
URL / URN: https://proceedings.neurips.cc/paper/2021/hash/abec16f483abb...
Zugehörige Links:
Kurzbeschreibung (Abstract):

Switching dynamical systems provide a powerful, interpretable modeling framework for inference in time-series data in, e.g., the natural sciences or engineering applications. Since many areas, such as biology or discrete-event systems, are naturally described in continuous time, we present a model based on a Markov jump process modulating a subordinated diffusion process. We provide the exact evolution equations for the prior and posterior marginal densities, the direct solutions of which are however computationally intractable. Therefore, we develop a new continuous-time variational inference algorithm, combining a Gaussian process approximation on the diffusion level with posterior inference for Markov jump processes. By minimizing the path-wise Kullback-Leibler divergence we obtain (i) Bayesian latent state estimates for arbitrary points on the real axis and(ii) point estimates of unknown system parameters, utilizing variational expectation maximization. We extensively evaluate our algorithm under the model assumption and for real-world examples.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B4: Planung
Hinterlegungsdatum: 01 Okt 2021 10:15
Letzte Änderung: 30 Mai 2022 13:34
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen