TU Darmstadt / ULB / TUbiblio

A Comprehensive Study on Face Recognition Biases Beyond Demographics

Terhörst, Philipp ; Kolf, Jan Niklas ; Huber, Marco ; Kirchbuchner, Florian ; Damer, Naser ; Morales, Aythami ; Fierrez, Julian ; Kuijper, Arjan (2021)
A Comprehensive Study on Face Recognition Biases Beyond Demographics.
In: IEEE Transactions on Technology and Society, (Early Access)
doi: 10.1109/TTS.2021.3111823
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Face recognition (FR) systems have a growing effect on critical decision-making processes. Recent works have shown that FR solutions show strong performance differences based on the user’s demographics. However, to enable a trustworthy FR technology, it is essential to know the influence of an extended range of facial attributes on FR beyond demographics. Therefore, in this work, we analyse FR bias over a wide range of attributes. We investigate the influence of 47 attributes on the verification performance of two popular FR models. The experiments were performed on the publicly available MAAD-Face attribute database with over 120M high-quality attribute annotations. To prevent misleading statements about biased performances, we introduced control group based validity values to decide if unbalanced test data causes the performance differences. The results demonstrate that also many non-demographic attributes strongly affect the recognition performance, such as accessories, hair-styles and colors, face shapes, or facial anomalies. The observations of this work show the strong need for further advances in making FR system more robust, explainable, and fair. Moreover, our findings might help to a better understanding of how FR networks work, to enhance the robustness of these networks, and to develop more generalized bias-mitigating face recognition solutions.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Terhörst, Philipp ; Kolf, Jan Niklas ; Huber, Marco ; Kirchbuchner, Florian ; Damer, Naser ; Morales, Aythami ; Fierrez, Julian ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: A Comprehensive Study on Face Recognition Biases Beyond Demographics
Sprache: Englisch
Publikationsjahr: 10 September 2021
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Technology and Society
(Heft-)Nummer: Early Access
DOI: 10.1109/TTS.2021.3111823
Kurzbeschreibung (Abstract):

Face recognition (FR) systems have a growing effect on critical decision-making processes. Recent works have shown that FR solutions show strong performance differences based on the user’s demographics. However, to enable a trustworthy FR technology, it is essential to know the influence of an extended range of facial attributes on FR beyond demographics. Therefore, in this work, we analyse FR bias over a wide range of attributes. We investigate the influence of 47 attributes on the verification performance of two popular FR models. The experiments were performed on the publicly available MAAD-Face attribute database with over 120M high-quality attribute annotations. To prevent misleading statements about biased performances, we introduced control group based validity values to decide if unbalanced test data causes the performance differences. The results demonstrate that also many non-demographic attributes strongly affect the recognition performance, such as accessories, hair-styles and colors, face shapes, or facial anomalies. The observations of this work show the strong need for further advances in making FR system more robust, explainable, and fair. Moreover, our findings might help to a better understanding of how FR networks work, to enhance the robustness of these networks, and to develop more generalized bias-mitigating face recognition solutions.

Freie Schlagworte: Face recognition, Bias, Biometrics, Machine learning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 28 Sep 2021 07:08
Letzte Änderung: 27 Feb 2023 11:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen