TU Darmstadt / ULB / TUbiblio

The role of combustion science and technology in low and zero impact energy transformation processes

Dreizler, Andreas ; Pitsch, Heinz ; Scherer, Viktor ; Schulz, Christof ; Janicka, Johannes (2021)
The role of combustion science and technology in low and zero impact energy transformation processes.
In: Applications in Energy and Combustion Science, 2021, 7
doi: 10.26083/tuprints-00019650
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Predictions made by climate researchers are highly worrisome and demand rapid action to avoid the threat of climate catastrophe. Global energy systems must be transformed as quickly as possible by minimising or avoiding net greenhouse gas emissions. There is broad agreement on this goal, demonstrated by international treaties such as the Sustainable Development Goals of the United Nations and the European Green Deal presented in 2019.

However, the practical measures required for the transition are the subject of heated discussion. Consensus on the goal, dissent on the pathway is how the situation can be summarized.

This opinion article aims to bring engineering sciences into the centre of the discussion. We are concerned that technological options that are important for our society from an ecological and economic point of view are being neglected. We plead for competition between all technological solutions to reach the goals in the best possible way and to consider feasibility, ease of transition, and economical and societal aspects.

We are convinced that the thermochemical utilisation of chemical energy carriers is an important component of future energy systems and is key to enabling climate neutrality. Biogenic and synthetic carbonaceous and carbon-free chemical energy carriers will be indispensable for reliable power generation and energy supply for mobility, industry, and buildings.

This opinion article is the result of intensive discussions between a group of more than fifty internationally renowned researchers who are scientifically engaged in thermofluids and energy process engineering. With this article we express our plea: Let us consider all options and explore new ideas that will move us towards a climate-neutral energy system!

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Dreizler, Andreas ; Pitsch, Heinz ; Scherer, Viktor ; Schulz, Christof ; Janicka, Johannes
Art des Eintrags: Zweitveröffentlichung
Titel: The role of combustion science and technology in low and zero impact energy transformation processes
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applications in Energy and Combustion Science
Jahrgang/Volume einer Zeitschrift: 7
Kollation: 12 Seiten
DOI: 10.26083/tuprints-00019650
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19650
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Predictions made by climate researchers are highly worrisome and demand rapid action to avoid the threat of climate catastrophe. Global energy systems must be transformed as quickly as possible by minimising or avoiding net greenhouse gas emissions. There is broad agreement on this goal, demonstrated by international treaties such as the Sustainable Development Goals of the United Nations and the European Green Deal presented in 2019.

However, the practical measures required for the transition are the subject of heated discussion. Consensus on the goal, dissent on the pathway is how the situation can be summarized.

This opinion article aims to bring engineering sciences into the centre of the discussion. We are concerned that technological options that are important for our society from an ecological and economic point of view are being neglected. We plead for competition between all technological solutions to reach the goals in the best possible way and to consider feasibility, ease of transition, and economical and societal aspects.

We are convinced that the thermochemical utilisation of chemical energy carriers is an important component of future energy systems and is key to enabling climate neutrality. Biogenic and synthetic carbonaceous and carbon-free chemical energy carriers will be indispensable for reliable power generation and energy supply for mobility, industry, and buildings.

This opinion article is the result of intensive discussions between a group of more than fifty internationally renowned researchers who are scientifically engaged in thermofluids and energy process engineering. With this article we express our plea: Let us consider all options and explore new ideas that will move us towards a climate-neutral energy system!

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-196506
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Energie- und Kraftwerkstechnik (EKT)
16 Fachbereich Maschinenbau > Fachgebiet Reaktive Strömungen und Messtechnik (RSM)
Hinterlegungsdatum: 22 Sep 2021 08:32
Letzte Änderung: 27 Sep 2021 05:59
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen