TU Darmstadt / ULB / TUbiblio

Polymer-Derived Lightweight SiBCN Ceramic Nanofibers with High Microwave Absorption Performance

Chen, Qingqing ; Li, Daxin ; Liao, Xingqi ; Yang, Zhihua ; Jia, Dechang ; Zhou, Yu ; Riedel, Ralf (2021)
Polymer-Derived Lightweight SiBCN Ceramic Nanofibers with High Microwave Absorption Performance.
In: ACS Applied Materials & Interfaces, 13 (29)
doi: 10.1021/acsami.1c07912
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Lightweight SiBCN ceramic nanofibers were prepared by a combination of electrostatic spinning and high-temperature annealing techniques, showing tunable electromagnetic wave absorption. By controlling the annealing temperature, the nanoscale architectures and atomic bonding structures of asprepared nanofibers could be well regulated. The resulting SiBCN nanofibers similar to 300 nm in diameter, which were composed of an amorphous matrix, beta-SiC, and free carbon nanocrystals, were defect-free after annealing at 1600 degrees C. SiBCN nanofibers annealed at 1600 degrees C exhibited good microwave absorption, obtaining a minimum reflection coefficient of -56.9 dB at 10.56 GHz, a sample thickness of 2.6 mm with a maximum effective absorption bandwidth of 3.45 GHz, and a maximum dielectric constant of 0.44. Owing to the optimized A + B + C microstructure, SiBCN ceramic nanofibers with satisfying microwave absorption properties endowed the nanofibers with the potential to be used as lightweight, ultrastrong radar wave absorbers applied in military and the commercial market.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Chen, Qingqing ; Li, Daxin ; Liao, Xingqi ; Yang, Zhihua ; Jia, Dechang ; Zhou, Yu ; Riedel, Ralf
Art des Eintrags: Bibliographie
Titel: Polymer-Derived Lightweight SiBCN Ceramic Nanofibers with High Microwave Absorption Performance
Sprache: Englisch
Publikationsjahr: 28 Juli 2021
Verlag: ACS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Applied Materials & Interfaces
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 29
DOI: 10.1021/acsami.1c07912
Kurzbeschreibung (Abstract):

Lightweight SiBCN ceramic nanofibers were prepared by a combination of electrostatic spinning and high-temperature annealing techniques, showing tunable electromagnetic wave absorption. By controlling the annealing temperature, the nanoscale architectures and atomic bonding structures of asprepared nanofibers could be well regulated. The resulting SiBCN nanofibers similar to 300 nm in diameter, which were composed of an amorphous matrix, beta-SiC, and free carbon nanocrystals, were defect-free after annealing at 1600 degrees C. SiBCN nanofibers annealed at 1600 degrees C exhibited good microwave absorption, obtaining a minimum reflection coefficient of -56.9 dB at 10.56 GHz, a sample thickness of 2.6 mm with a maximum effective absorption bandwidth of 3.45 GHz, and a maximum dielectric constant of 0.44. Owing to the optimized A + B + C microstructure, SiBCN ceramic nanofibers with satisfying microwave absorption properties endowed the nanofibers with the potential to be used as lightweight, ultrastrong radar wave absorbers applied in military and the commercial market.

Freie Schlagworte: SiBCN, nanofibers, electrospinning dielectric properties, electromagnetic wave absorption, SINGLE-SOURCE-PRECURSOR, ELECTROMAGNETIC PROPERTIES, HOLLOW MICROSPHERES, CARBON NANOWIRES, PDCS-SIBCN, METAL-FREE, COMPOSITES, SICN, FIBERS, SHELL
Zusätzliche Informationen:

National Natural Science Foundation of China (NSFC), Grant Numbers 52002092, 51832002. China Postdoctoral Science Foundation, Grant Numbers BX20190095, LBH-Z19141.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
Hinterlegungsdatum: 23 Sep 2021 05:27
Letzte Änderung: 23 Sep 2021 05:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen