Gaspoz, Fernando ; Kreuzer, Christian ; Veeser, Andreas ; Wollner, Winnifried (2021)
Quasi-best approximation in optimization with PDE constraints.
In: Inverse Problems, 2021, 36 (1)
doi: 10.26083/tuprints-00019330
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
We consider finite element solutions to quadratic optimization problems, where the state depends on the control via a well-posed linear partial differential equation. Exploiting the structure of a suitably reduced optimality system, we prove that the combined error in the state and adjoint state of the variational discretization is bounded by the best approximation error in the underlying discrete spaces. The constant in this bound depends on the inverse square root of the Tikhonov regularization parameter. Furthermore, if the operators of control action and observation are compact, this quasi-best approximation constant becomes independent of the Tikhonov parameter as the mesh size tends to 0 and we give quantitative relationships between mesh size and Tikhonov parameter ensuring this independence. We also derive generalizations of these results when the control variable is discretized or when it is taken from a convex set.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Gaspoz, Fernando ; Kreuzer, Christian ; Veeser, Andreas ; Wollner, Winnifried |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Quasi-best approximation in optimization with PDE constraints |
Sprache: | Englisch |
Publikationsjahr: | 2021 |
Publikationsdatum der Erstveröffentlichung: | 2021 |
Verlag: | IOP Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Inverse Problems |
Jahrgang/Volume einer Zeitschrift: | 36 |
(Heft-)Nummer: | 1 |
Kollation: | 29 Seiten |
DOI: | 10.26083/tuprints-00019330 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/19330 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung aus gefördertem Golden Open Access |
Kurzbeschreibung (Abstract): | We consider finite element solutions to quadratic optimization problems, where the state depends on the control via a well-posed linear partial differential equation. Exploiting the structure of a suitably reduced optimality system, we prove that the combined error in the state and adjoint state of the variational discretization is bounded by the best approximation error in the underlying discrete spaces. The constant in this bound depends on the inverse square root of the Tikhonov regularization parameter. Furthermore, if the operators of control action and observation are compact, this quasi-best approximation constant becomes independent of the Tikhonov parameter as the mesh size tends to 0 and we give quantitative relationships between mesh size and Tikhonov parameter ensuring this independence. We also derive generalizations of these results when the control variable is discretized or when it is taken from a convex set. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-193304 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Optimierung |
Hinterlegungsdatum: | 06 Sep 2021 12:12 |
Letzte Änderung: | 20 Sep 2021 07:07 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Quasi-best approximation in optimization with PDE constraints. (deposited 06 Sep 2021 12:12) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |