Dokoza, Toni ; Plümacher, Dominik ; Smuda, Martin ; Jegust, Christian ; Oberlack, Martin (2021)
Solution to the 1D Stefan problem using the unified transform method.
In: Journal of Physics A: Mathematical and Theoretical, 2021, 54 (37)
doi: 10.26083/tuprints-00019502
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
In this paper the one-dimensional two-phase Stefan problem is studied analytically leading to a system of non-linear Volterra-integral-equations describing the heat distribution in each phase. For this the unified transform method has been employed which provides a method via a global relation, by which these problems can be solved using integral representations. To do this, the underlying partial differential equation is rewritten into a certain divergence form, which enables to treat the boundary values as part of the integrals. Classical analytical methods fail in the case of the Stefan problem due to the moving interface. From the resulting non-linear integro-differential equations the one for the position of the phase change can be solved in a first step. This is done numerically using a fix-point iteration and spline interpolation. Once obtained, the temperature distribution in both phases is generated from their integral representation.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Dokoza, Toni ; Plümacher, Dominik ; Smuda, Martin ; Jegust, Christian ; Oberlack, Martin |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Solution to the 1D Stefan problem using the unified transform method |
Sprache: | Englisch |
Publikationsjahr: | 2021 |
Publikationsdatum der Erstveröffentlichung: | 2021 |
Verlag: | IOP Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Physics A: Mathematical and Theoretical |
Jahrgang/Volume einer Zeitschrift: | 54 |
(Heft-)Nummer: | 37 |
Kollation: | 22 Seiten |
DOI: | 10.26083/tuprints-00019502 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/19502 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung aus gefördertem Golden Open Access |
Kurzbeschreibung (Abstract): | In this paper the one-dimensional two-phase Stefan problem is studied analytically leading to a system of non-linear Volterra-integral-equations describing the heat distribution in each phase. For this the unified transform method has been employed which provides a method via a global relation, by which these problems can be solved using integral representations. To do this, the underlying partial differential equation is rewritten into a certain divergence form, which enables to treat the boundary values as part of the integrals. Classical analytical methods fail in the case of the Stefan problem due to the moving interface. From the resulting non-linear integro-differential equations the one for the position of the phase change can be solved in a first step. This is done numerically using a fix-point iteration and spline interpolation. Once obtained, the temperature distribution in both phases is generated from their integral representation. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-195026 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy) |
Hinterlegungsdatum: | 10 Sep 2021 12:24 |
Letzte Änderung: | 01 Okt 2021 07:11 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Solution to the 1D Stefan problem using the unified transform method. (deposited 10 Sep 2021 12:24) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |