TU Darmstadt / ULB / TUbiblio

Robust Copula-Based Detection of Shallow-Buried Landmines With Forward-Looking Radar

Pambudi, Afief Dias ; Ahmad, Fauzia ; Zoubir, Abdelhak M. (2022)
Robust Copula-Based Detection of Shallow-Buried Landmines With Forward-Looking Radar.
In: IEEE Transactions on Aerospace and Electronic Systems, 58 (2)
doi: 10.1109/TAES.2021.3111851
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We propose a technique for landmine detection using forward-looking ground-penetrating radar. The detector is applied to radar images obtained from multiple viewpoints of the region of interest and is based on a robust version of the likelihood ratio test (LRT). We incorporate the statistical dependence between multiview images into the test via copula-based model. The test is designed to maximize the worst-case performance over all feasible pairs of target and clutter distributions, thereby eliminating the need for strong assumptions about the image statistics. We evaluate the detection performance of the proposed technique for different copula functions representing the dependence structure. Using electromagnetic modeled data of shallow-buried targets under varying ground surface roughness profiles, we demonstrate the superiority of the robust copula-based detector over existing parametric and robust LRT approaches designed under the assumption of statistical independence of multiview images.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Pambudi, Afief Dias ; Ahmad, Fauzia ; Zoubir, Abdelhak M.
Art des Eintrags: Bibliographie
Titel: Robust Copula-Based Detection of Shallow-Buried Landmines With Forward-Looking Radar
Sprache: Englisch
Publikationsjahr: April 2022
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Aerospace and Electronic Systems
Jahrgang/Volume einer Zeitschrift: 58
(Heft-)Nummer: 2
DOI: 10.1109/TAES.2021.3111851
URL / URN: https://ieeexplore.ieee.org/xpl/aboutJournal.jsp?punumber=7
Kurzbeschreibung (Abstract):

We propose a technique for landmine detection using forward-looking ground-penetrating radar. The detector is applied to radar images obtained from multiple viewpoints of the region of interest and is based on a robust version of the likelihood ratio test (LRT). We incorporate the statistical dependence between multiview images into the test via copula-based model. The test is designed to maximize the worst-case performance over all feasible pairs of target and clutter distributions, thereby eliminating the need for strong assumptions about the image statistics. We evaluate the detection performance of the proposed technique for different copula functions representing the dependence structure. Using electromagnetic modeled data of shallow-buried targets under varying ground surface roughness profiles, we demonstrate the superiority of the robust copula-based detector over existing parametric and robust LRT approaches designed under the assumption of statistical independence of multiview images.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 15 Sep 2021 14:31
Letzte Änderung: 22 Jul 2024 12:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen