TU Darmstadt / ULB / TUbiblio

Nanoparticle Tracing during Laser Powder Bed Fusion of Oxide Dispersion Strengthened Steels

Yang, Yangyiwei ; Doñate-Buendía, Carlos ; Oyedeji, Timileyin David ; Gökce, Bilal ; Xu, Bai-Xiang (2021)
Nanoparticle Tracing during Laser Powder Bed Fusion of Oxide Dispersion Strengthened Steels.
In: Materials, 2021, 14 (13)
doi: 10.26083/tuprints-00019391
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The control of nanoparticle agglomeration during the fabrication of oxide dispersion strengthened steels is a key factor in maximizing their mechanical and high temperature reinforcement properties. However, the characterization of the nanoparticle evolution during processing represents a challenge due to the lack of experimental methodologies that allow in situ evaluation during laser powder bed fusion (LPBF) of nanoparticle-additivated steel powders. To address this problem, a simulation scheme is proposed to trace the drift and the interactions of the nanoparticles in the melt pool by joint heat-melt-microstructure–coupled phase-field simulation with nanoparticle kinematics. Van derWaals attraction and electrostatic repulsion with screened-Coulomb potential are explicitly employed to model the interactions with assumptions made based on reported experimental evidence. Numerical simulations have been conducted for LPBF of oxide nanoparticle-additivated PM2000 powder considering various factors, including the nanoparticle composition and size distribution. The obtained results provide a statistical and graphical demonstration of the temporal and spatial variations of the traced nanoparticles, showing ~55% of the nanoparticles within the generated grains, and a smaller fraction of ~30% in the pores, ~13% on the surface, and ~2% on the grain boundaries. To prove the methodology and compare it with experimental observations, the simulations are performed for LPBF of a 0.005 wt % yttrium oxide nanoparticle-additivated PM2000 powder and the final degree of nanoparticle agglomeration and distribution are analyzed with respect to a series of geometric and material parameters.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Yang, Yangyiwei ; Doñate-Buendía, Carlos ; Oyedeji, Timileyin David ; Gökce, Bilal ; Xu, Bai-Xiang
Art des Eintrags: Zweitveröffentlichung
Titel: Nanoparticle Tracing during Laser Powder Bed Fusion of Oxide Dispersion Strengthened Steels
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 13
Kollation: 24 Seiten
DOI: 10.26083/tuprints-00019391
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19391
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

The control of nanoparticle agglomeration during the fabrication of oxide dispersion strengthened steels is a key factor in maximizing their mechanical and high temperature reinforcement properties. However, the characterization of the nanoparticle evolution during processing represents a challenge due to the lack of experimental methodologies that allow in situ evaluation during laser powder bed fusion (LPBF) of nanoparticle-additivated steel powders. To address this problem, a simulation scheme is proposed to trace the drift and the interactions of the nanoparticles in the melt pool by joint heat-melt-microstructure–coupled phase-field simulation with nanoparticle kinematics. Van derWaals attraction and electrostatic repulsion with screened-Coulomb potential are explicitly employed to model the interactions with assumptions made based on reported experimental evidence. Numerical simulations have been conducted for LPBF of oxide nanoparticle-additivated PM2000 powder considering various factors, including the nanoparticle composition and size distribution. The obtained results provide a statistical and graphical demonstration of the temporal and spatial variations of the traced nanoparticles, showing ~55% of the nanoparticles within the generated grains, and a smaller fraction of ~30% in the pores, ~13% on the surface, and ~2% on the grain boundaries. To prove the methodology and compare it with experimental observations, the simulations are performed for LPBF of a 0.005 wt % yttrium oxide nanoparticle-additivated PM2000 powder and the final degree of nanoparticle agglomeration and distribution are analyzed with respect to a series of geometric and material parameters.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-193919
Zusätzliche Informationen:

Keywords: additive manufacturing; laser powder bed fusion; selective laser melting; oxide dispersion strengthened steel; phase-field model; finite element simulation; nanoparticle interaction

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
Hinterlegungsdatum: 30 Aug 2021 12:19
Letzte Änderung: 06 Sep 2021 05:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen