TU Darmstadt / ULB / TUbiblio

Decentralized Swarm Collision Avoidance for Quadrotors via End-to-End Reinforcement Learning

Ourari, R. ; Cui, K. ; Koeppl, H. (2021)
Decentralized Swarm Collision Avoidance for Quadrotors via End-to-End Reinforcement Learning.
Report, Bibliographie

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Collision avoidance algorithms are of central interest to many drone applications. In particular, decentralized approaches may be the key to enabling robust drone swarm solutions in cases where centralized communication becomes computationally prohibitive. In this work, we draw biological inspiration from flocks of starlings (Sturnus vulgaris) and apply the insight to end-to-end learned decentralized collision avoidance. More specifically, we propose a new, scalable observation model following a biomimetic topological interaction rule that leads to stable learning and robust avoidance behavior. Additionally, prior work primarily focuses on invoking a separation principle, i.e. designing collision avoidance independent of specific tasks. By applying a general reinforcement learning approach, we propose a holistic learning-based approach to integrating collision avoidance with various tasks and dynamics. To validate the generality of this approach, we successfully apply our methodology to a number of configurations. Our learned policies are tested in simulation and subsequently transferred to real-world drones to validate their real-world applicability.

Typ des Eintrags: Report
Erschienen: 2021
Autor(en): Ourari, R. ; Cui, K. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Decentralized Swarm Collision Avoidance for Quadrotors via End-to-End Reinforcement Learning
Sprache: Englisch
Publikationsjahr: 30 April 2021
Verlag: arXiv
Reihe: Robotics
Kollation: 6 Seiten
URL / URN: https://arxiv.org/abs/2104.14912v1
Kurzbeschreibung (Abstract):

Collision avoidance algorithms are of central interest to many drone applications. In particular, decentralized approaches may be the key to enabling robust drone swarm solutions in cases where centralized communication becomes computationally prohibitive. In this work, we draw biological inspiration from flocks of starlings (Sturnus vulgaris) and apply the insight to end-to-end learned decentralized collision avoidance. More specifically, we propose a new, scalable observation model following a biomimetic topological interaction rule that leads to stable learning and robust avoidance behavior. Additionally, prior work primarily focuses on invoking a separation principle, i.e. designing collision avoidance independent of specific tasks. By applying a general reinforcement learning approach, we propose a holistic learning-based approach to integrating collision avoidance with various tasks and dynamics. To validate the generality of this approach, we successfully apply our methodology to a number of configurations. Our learned policies are tested in simulation and subsequently transferred to real-world drones to validate their real-world applicability.

Freie Schlagworte: Robotics, Artificial Intelligence, AI, Machine Learning, ML
Zusätzliche Informationen:

1. Version; Beitrag ändert sich mit Version 2

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 06 Sep 2021 07:19
Letzte Änderung: 19 Dez 2024 10:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen