TU Darmstadt / ULB / TUbiblio

Multi-StyleGAN: Towards Image-Based Simulation of Time-Lapse Live-Cell Microscopy

Prangemeier, T. ; Reich, C. ; Wildner, C. ; Koeppl, H. (2021)
Multi-StyleGAN: Towards Image-Based Simulation of Time-Lapse Live-Cell Microscopy.
24th International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg, France (27.09.2021-01.10.2021)
doi: 10.1007/978-3-030-87237-3_46
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Time-lapse fluorescent microscopy (TLFM) combined with predictive mathematical modelling is a powerful tool to study the inherently dynamic processes of life on the single-cell level. Such experiments are costly, complex and labour intensive. A complimentary approach and a step towards in silico experimentation, is to synthesise the imagery itself. Here, we propose Multi-StyleGAN as a descriptive approach to simulate time-lapse fluorescence microscopy imagery of living cells, based on a past experiment. This novel generative adversarial network synthesises a multi-domain sequence of consecutive timesteps. We showcase Multi-StyleGAN on imagery of multiple live yeast cells in microstructured environments and train on a dataset recorded in our laboratory. The simulation captures underlying biophysical factors and time dependencies, such as cell morphology, growth, physical interactions, as well as the intensity of a fluorescent reporter protein. An immediate application is to generate additional training and validation data for feature extraction algorithms or to aid and expedite development of advanced experimental techniques such as online monitoring or control of cells.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Prangemeier, T. ; Reich, C. ; Wildner, C. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Multi-StyleGAN: Towards Image-Based Simulation of Time-Lapse Live-Cell Microscopy
Sprache: Englisch
Publikationsjahr: 21 September 2021
Verlag: Springer
Buchtitel: Medical Image Computing and Computer Assisted Intervention - MICCAI 2021
Reihe: LNCS
Band einer Reihe: 12908
Veranstaltungstitel: 24th International Conference on Medical Image Computing and Computer-Assisted Intervention
Veranstaltungsort: Strasbourg, France
Veranstaltungsdatum: 27.09.2021-01.10.2021
DOI: 10.1007/978-3-030-87237-3_46
Zugehörige Links:
Kurzbeschreibung (Abstract):

Time-lapse fluorescent microscopy (TLFM) combined with predictive mathematical modelling is a powerful tool to study the inherently dynamic processes of life on the single-cell level. Such experiments are costly, complex and labour intensive. A complimentary approach and a step towards in silico experimentation, is to synthesise the imagery itself. Here, we propose Multi-StyleGAN as a descriptive approach to simulate time-lapse fluorescence microscopy imagery of living cells, based on a past experiment. This novel generative adversarial network synthesises a multi-domain sequence of consecutive timesteps. We showcase Multi-StyleGAN on imagery of multiple live yeast cells in microstructured environments and train on a dataset recorded in our laboratory. The simulation captures underlying biophysical factors and time dependencies, such as cell morphology, growth, physical interactions, as well as the intensity of a fluorescent reporter protein. An immediate application is to generate additional training and validation data for feature extraction algorithms or to aid and expedite development of advanced experimental techniques such as online monitoring or control of cells.

Freie Schlagworte: Computer Vision and Pattern Recognition, Machine Learning, Image and Video Processing, Quantitative Methods
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 06 Sep 2021 07:03
Letzte Änderung: 14 Okt 2021 08:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen