TU Darmstadt / ULB / TUbiblio

Multistep and Runge-Kutta convolution quadrature methods for coupled dynamical systems

Egger, Herbert ; Schmidt, Kersten ; Shashkov, Vsevelod (2021)
Multistep and Runge-Kutta convolution quadrature methods for coupled dynamical systems.
In: Journal of Computational and Applied Mathematics, 387
doi: 10.1016/j.cam.2019.112618
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We consider the efficient numerical solution of coupled dynamical systems, consisting of a low dimensional nonlinear part and a high dimensional linear time invariant part, e.g., stemming from spatial discretization of an underlying partial differential equation. The linear subsystem can be eliminated in frequency domain and for the numerical solution of the resulting integro-differential algebraic equations, we propose a combination of Runge-Kutta or multistep time stepping methods with appropriate convolution quadrature to handle the integral terms. The resulting methods are shown to be algebraically equivalent to a Runge-Kutta or multistep solution of the coupled system and thus automatically inherit the corresponding stability and accuracy properties. After a computationally expensive pre-processing step, the online simulation can, however, be performed at essentially the same cost as solving only the low dimensional nonlinear subsystem. The proposed method is, therefore, particularly attractive, if repeated simulation of the coupled dynamical system is required.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Egger, Herbert ; Schmidt, Kersten ; Shashkov, Vsevelod
Art des Eintrags: Bibliographie
Titel: Multistep and Runge-Kutta convolution quadrature methods for coupled dynamical systems
Sprache: Englisch
Publikationsjahr: 2021
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Computational and Applied Mathematics
Jahrgang/Volume einer Zeitschrift: 387
DOI: 10.1016/j.cam.2019.112618
URL / URN: https://www.sciencedirect.com/science/article/pii/S037704271...
Kurzbeschreibung (Abstract):

We consider the efficient numerical solution of coupled dynamical systems, consisting of a low dimensional nonlinear part and a high dimensional linear time invariant part, e.g., stemming from spatial discretization of an underlying partial differential equation. The linear subsystem can be eliminated in frequency domain and for the numerical solution of the resulting integro-differential algebraic equations, we propose a combination of Runge-Kutta or multistep time stepping methods with appropriate convolution quadrature to handle the integral terms. The resulting methods are shown to be algebraically equivalent to a Runge-Kutta or multistep solution of the coupled system and thus automatically inherit the corresponding stability and accuracy properties. After a computationally expensive pre-processing step, the online simulation can, however, be performed at essentially the same cost as solving only the low dimensional nonlinear subsystem. The proposed method is, therefore, particularly attractive, if repeated simulation of the coupled dynamical system is required.

Freie Schlagworte: Coupled dynamical systems, Convolution quadrature, Runge-Kutta methods, Multistep methods, Differential-algebraic equations
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 07 Sep 2021 14:28
Letzte Änderung: 14 Jan 2024 10:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen