Egger, Herbert ; Schmidt, Kersten ; Shashkov, Vsevelod (2021)
Multistep and Runge-Kutta convolution quadrature methods for coupled dynamical systems.
In: Journal of Computational and Applied Mathematics, 387
doi: 10.1016/j.cam.2019.112618
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
We consider the efficient numerical solution of coupled dynamical systems, consisting of a low dimensional nonlinear part and a high dimensional linear time invariant part, e.g., stemming from spatial discretization of an underlying partial differential equation. The linear subsystem can be eliminated in frequency domain and for the numerical solution of the resulting integro-differential algebraic equations, we propose a combination of Runge-Kutta or multistep time stepping methods with appropriate convolution quadrature to handle the integral terms. The resulting methods are shown to be algebraically equivalent to a Runge-Kutta or multistep solution of the coupled system and thus automatically inherit the corresponding stability and accuracy properties. After a computationally expensive pre-processing step, the online simulation can, however, be performed at essentially the same cost as solving only the low dimensional nonlinear subsystem. The proposed method is, therefore, particularly attractive, if repeated simulation of the coupled dynamical system is required.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Egger, Herbert ; Schmidt, Kersten ; Shashkov, Vsevelod |
Art des Eintrags: | Bibliographie |
Titel: | Multistep and Runge-Kutta convolution quadrature methods for coupled dynamical systems |
Sprache: | Englisch |
Publikationsjahr: | 2021 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Computational and Applied Mathematics |
Jahrgang/Volume einer Zeitschrift: | 387 |
DOI: | 10.1016/j.cam.2019.112618 |
URL / URN: | https://www.sciencedirect.com/science/article/pii/S037704271... |
Kurzbeschreibung (Abstract): | We consider the efficient numerical solution of coupled dynamical systems, consisting of a low dimensional nonlinear part and a high dimensional linear time invariant part, e.g., stemming from spatial discretization of an underlying partial differential equation. The linear subsystem can be eliminated in frequency domain and for the numerical solution of the resulting integro-differential algebraic equations, we propose a combination of Runge-Kutta or multistep time stepping methods with appropriate convolution quadrature to handle the integral terms. The resulting methods are shown to be algebraically equivalent to a Runge-Kutta or multistep solution of the coupled system and thus automatically inherit the corresponding stability and accuracy properties. After a computationally expensive pre-processing step, the online simulation can, however, be performed at essentially the same cost as solving only the low dimensional nonlinear subsystem. The proposed method is, therefore, particularly attractive, if repeated simulation of the coupled dynamical system is required. |
Freie Schlagworte: | Coupled dynamical systems, Convolution quadrature, Runge-Kutta methods, Multistep methods, Differential-algebraic equations |
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen |
Hinterlegungsdatum: | 07 Sep 2021 14:28 |
Letzte Änderung: | 14 Jan 2024 10:25 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |