Gölz, Martin ; Zoubir, Abdelhak M. ; Koivunen, Visa (2021)
Multiple Hypothesis Testing Framework for Spatial Signals.
Report, Bibliographie
Kurzbeschreibung (Abstract)
The problem of identifying regions of spatially interesting, different or adversarial behavior is inherent to many practical applications involving distributed multisensor systems. In this work, we develop a general framework stemming from multiple hypothesis testing to identify such regions. A discrete spatial grid is assumed for the monitored environment. The spatial grid points associated with different hypotheses are identified while controlling the false discovery rate at a pre-specified level. Measurements are acquired using a large-scale sensor network. We propose a novel, data-driven method to estimate local false discovery rates based on the spectral method of moments. Our method is agnostic to specific spatial propagation models of the underlying physical phenomenon. It relies on a broadly applicable density model for local summary statistics. In between sensors, locations are assigned to regions associated with different hypotheses based on interpolated local false discovery rates. The benefits of our method are illustrated by applications to spatially propagating radio waves.
Typ des Eintrags: | Report |
---|---|
Erschienen: | 2021 |
Autor(en): | Gölz, Martin ; Zoubir, Abdelhak M. ; Koivunen, Visa |
Art des Eintrags: | Bibliographie |
Titel: | Multiple Hypothesis Testing Framework for Spatial Signals |
Sprache: | Englisch |
Publikationsjahr: | 27 August 2021 |
Verlag: | arXiv |
Reihe: | Signal Processing |
Kollation: | 26 Seiten |
URL / URN: | https://arxiv.org/abs/2108.12314v1 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | The problem of identifying regions of spatially interesting, different or adversarial behavior is inherent to many practical applications involving distributed multisensor systems. In this work, we develop a general framework stemming from multiple hypothesis testing to identify such regions. A discrete spatial grid is assumed for the monitored environment. The spatial grid points associated with different hypotheses are identified while controlling the false discovery rate at a pre-specified level. Measurements are acquired using a large-scale sensor network. We propose a novel, data-driven method to estimate local false discovery rates based on the spectral method of moments. Our method is agnostic to specific spatial propagation models of the underlying physical phenomenon. It relies on a broadly applicable density model for local summary statistics. In between sensors, locations are assigned to regions associated with different hypotheses based on interpolated local false discovery rates. The benefits of our method are illustrated by applications to spatially propagating radio waves. |
Zusätzliche Informationen: | 1. Version |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung |
Hinterlegungsdatum: | 06 Sep 2021 15:00 |
Letzte Änderung: | 19 Dez 2024 10:31 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |