TU Darmstadt / ULB / TUbiblio

TWEAC: Transformer with Extendable QA Agent Classifiers

Geigle, Gregor ; Reimers, Nils ; Rücklé, Andreas ; Gurevych, Iryna (2021)
TWEAC: Transformer with Extendable QA Agent Classifiers.
doi: 10.48550/arXiv.2104.07081
Report, Bibliographie

Kurzbeschreibung (Abstract)

Question answering systems should help users to access knowledge on a broad range of topics and to answer a wide array of different questions. Most systems fall short of this expectation as they are only specialized in one particular setting, e.g., answering factual questions with Wikipedia data. To overcome this limitation, we propose composing multiple QA agents within a meta-QA system. We argue that there exist a wide range of specialized QA agents in literature. Thus, we address the central research question of how to effectively and efficiently identify suitable QA agents for any given question. We study both supervised and unsupervised approaches to address this challenge, showing that TWEAC -- Transformer with Extendable Agent Classifiers -- achieves the best performance overall with 94% accuracy. We provide extensive insights on the scalability of TWEAC, demonstrating that it scales robustly to over 100 QA agents with each providing just 1000 examples of questions they can answer.

Typ des Eintrags: Report
Erschienen: 2021
Autor(en): Geigle, Gregor ; Reimers, Nils ; Rücklé, Andreas ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: TWEAC: Transformer with Extendable QA Agent Classifiers
Sprache: Englisch
Publikationsjahr: 14 April 2021
Verlag: arXiv
Reihe: Computation and Language
Auflage: 1. Version
DOI: 10.48550/arXiv.2104.07081
URL / URN: https://arxiv.org/abs/2104.07081
Zugehörige Links:
Kurzbeschreibung (Abstract):

Question answering systems should help users to access knowledge on a broad range of topics and to answer a wide array of different questions. Most systems fall short of this expectation as they are only specialized in one particular setting, e.g., answering factual questions with Wikipedia data. To overcome this limitation, we propose composing multiple QA agents within a meta-QA system. We argue that there exist a wide range of specialized QA agents in literature. Thus, we address the central research question of how to effectively and efficiently identify suitable QA agents for any given question. We study both supervised and unsupervised approaches to address this challenge, showing that TWEAC -- Transformer with Extendable Agent Classifiers -- achieves the best performance overall with 94% accuracy. We provide extensive insights on the scalability of TWEAC, demonstrating that it scales robustly to over 100 QA agents with each providing just 1000 examples of questions they can answer.

Freie Schlagworte: UKP_p_DIP, UKP_p_square, UKP_p_texprax, UKP_p_seditrah_factcheck
Zusätzliche Informationen:

Preprint

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 07 Sep 2021 14:23
Letzte Änderung: 11 Jul 2024 10:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen