TU Darmstadt / ULB / TUbiblio

A Unifying Framework and Comparative Evaluation of Statistical and Machine Learning Approaches to Non-Specific Syndromic Surveillance

Kulessa, Moritz ; Mencía, Eneldo Loza ; Fürnkranz, Johannes (2021)
A Unifying Framework and Comparative Evaluation of Statistical and Machine Learning Approaches to Non-Specific Syndromic Surveillance.
In: Computers, 2021, 10 (3)
doi: 10.26083/tuprints-00019322
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Monitoring the development of infectious diseases is of great importance for the prevention of major outbreaks. Syndromic surveillance aims at developing algorithms which can detect outbreaks as early as possible by monitoring data sources which allow to capture the occurrences of a certain disease. Recent research mainly concentrates on the surveillance of specific, known diseases, putting the focus on the definition of the disease pattern under surveillance. Until now, only little effort has been devoted to what we call non-specific syndromic surveillance, i.e., the use of all available data for detecting any kind of infectious disease outbreaks. In this work, we give an overview of non-specific syndromic surveillance from the perspective of machine learning and propose a unified framework based on global and local modeling techniques. We also present a set of statistical modeling techniques which have not been used in a local modeling context before and can serve as benchmarks for the more elaborate machine learning approaches. In an experimental comparison of different approaches to non-specific syndromic surveillance we found that these simple statistical techniques already achieve competitive results and sometimes even outperform more elaborate approaches. In particular, applying common syndromic surveillance methods in a non-specific setting seems to be promising.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Kulessa, Moritz ; Mencía, Eneldo Loza ; Fürnkranz, Johannes
Art des Eintrags: Zweitveröffentlichung
Titel: A Unifying Framework and Comparative Evaluation of Statistical and Machine Learning Approaches to Non-Specific Syndromic Surveillance
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computers
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 3
Kollation: 31 Seiten
DOI: 10.26083/tuprints-00019322
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19322
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Monitoring the development of infectious diseases is of great importance for the prevention of major outbreaks. Syndromic surveillance aims at developing algorithms which can detect outbreaks as early as possible by monitoring data sources which allow to capture the occurrences of a certain disease. Recent research mainly concentrates on the surveillance of specific, known diseases, putting the focus on the definition of the disease pattern under surveillance. Until now, only little effort has been devoted to what we call non-specific syndromic surveillance, i.e., the use of all available data for detecting any kind of infectious disease outbreaks. In this work, we give an overview of non-specific syndromic surveillance from the perspective of machine learning and propose a unified framework based on global and local modeling techniques. We also present a set of statistical modeling techniques which have not been used in a local modeling context before and can serve as benchmarks for the more elaborate machine learning approaches. In an experimental comparison of different approaches to non-specific syndromic surveillance we found that these simple statistical techniques already achieve competitive results and sometimes even outperform more elaborate approaches. In particular, applying common syndromic surveillance methods in a non-specific setting seems to be promising.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-193227
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Knowledge Engineering
Hinterlegungsdatum: 25 Aug 2021 12:17
Letzte Änderung: 01 Sep 2021 10:34
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen