TU Darmstadt / ULB / TUbiblio

A comprehensive comparative study of CO2-resistance and oxygen permeability of 60 wt % Ce0.8M0.2O2– (M = la, Pr, Nd, Sm, Gd) - 40 wt % La0.5Sr0.5Fe0.8Cu0.2O3– dual-phase membranes

Chen, Guoxing ; Zhao, Zhijun ; Widenmeyer, Marc ; Frömling, Till ; Hellmann, Tim ; Yan, Ruijuan ; Qu, Fangmu ; Homm, Gert ; Hofmann, Jan P. ; Feldhoff, Armin ; Weidenkaff, Anke (2021)
A comprehensive comparative study of CO2-resistance and oxygen permeability of 60 wt % Ce0.8M0.2O2– (M = la, Pr, Nd, Sm, Gd) - 40 wt % La0.5Sr0.5Fe0.8Cu0.2O3– dual-phase membranes.
In: Journal of Membrane Science, 639
doi: 10.1016/j.memsci.2021.119783
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this study, dual-phase membranes 60 wt % Ce0.8M0.2O2–δ (M = La, Pr, Nd, Sm, Gd) - 40 wt % La0.5Sr0.5Fe0.8Cu0.2O3–δ (CMO-LSFCO) were prepared via a combination of EDTA-citric acid complexing sol-gel and mechanical mixture method. Their chemical compatibility, CO2 tolerance, oxygen permeability, conductivity, and long-term regenerative durability regarding the phase structure and composition were systematically studied. Among the studied CMO-LSCFO dual-phase membranes, CGO-LSFCO shows the highest oxygen permeability under air/He and air/CO2 gradients, which can be associated with the small particle size and high electronic conductivity of the CGO phase resulting in a good percolation with different transfer paths based on the correlations between membrane material characterization and oxygen permeability. The comprehensive comparative study presented in this work identifies the critical factors influencing the oxygen permeability, which may provide guidelines for designing further high performance dual-phase oxygen transport membranes.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Chen, Guoxing ; Zhao, Zhijun ; Widenmeyer, Marc ; Frömling, Till ; Hellmann, Tim ; Yan, Ruijuan ; Qu, Fangmu ; Homm, Gert ; Hofmann, Jan P. ; Feldhoff, Armin ; Weidenkaff, Anke
Art des Eintrags: Bibliographie
Titel: A comprehensive comparative study of CO2-resistance and oxygen permeability of 60 wt % Ce0.8M0.2O2– (M = la, Pr, Nd, Sm, Gd) - 40 wt % La0.5Sr0.5Fe0.8Cu0.2O3– dual-phase membranes
Sprache: Englisch
Publikationsjahr: 1 Dezember 2021
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Membrane Science
Jahrgang/Volume einer Zeitschrift: 639
DOI: 10.1016/j.memsci.2021.119783
URL / URN: https://www.sciencedirect.com/science/article/abs/pii/S03767...
Kurzbeschreibung (Abstract):

In this study, dual-phase membranes 60 wt % Ce0.8M0.2O2–δ (M = La, Pr, Nd, Sm, Gd) - 40 wt % La0.5Sr0.5Fe0.8Cu0.2O3–δ (CMO-LSFCO) were prepared via a combination of EDTA-citric acid complexing sol-gel and mechanical mixture method. Their chemical compatibility, CO2 tolerance, oxygen permeability, conductivity, and long-term regenerative durability regarding the phase structure and composition were systematically studied. Among the studied CMO-LSCFO dual-phase membranes, CGO-LSFCO shows the highest oxygen permeability under air/He and air/CO2 gradients, which can be associated with the small particle size and high electronic conductivity of the CGO phase resulting in a good percolation with different transfer paths based on the correlations between membrane material characterization and oxygen permeability. The comprehensive comparative study presented in this work identifies the critical factors influencing the oxygen permeability, which may provide guidelines for designing further high performance dual-phase oxygen transport membranes.

Freie Schlagworte: Dual-phase membrane, Oxygen permeability, O2 resistance, Impedance spectroscopy
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 26 Aug 2021 06:03
Letzte Änderung: 12 Okt 2021 09:46
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen