TU Darmstadt / ULB / TUbiblio

ATRX and RECQ5 define distinct homologous recombination subpathways

Elbakry, Amira ; Juhász, Szilvia ; Chan, Ki Choi ; Löbrich, Markus (2021)
ATRX and RECQ5 define distinct homologous recombination subpathways.
In: Proceedings of the National Academy of Sciences of the United States of America, 2020, 118 (3)
doi: 10.26083/tuprints-00018942
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Homologous recombination (HR) is an important DNA double-strand break (DSB) repair pathway that copies sequence information lost at the break site from an undamaged homologous template. This involves the formation of a recombination structure that is processed to restore the original sequence but also harbors the potential for crossover (CO) formation between the participating molecules. Synthesis-dependent strand annealing (SDSA) is an HR subpathway that prevents CO formation and is thought to predominate in mammalian cells. The chromatin remodeler ATRX promotes an alternative HR subpathway that has the potential to form COs. Here, we show that ATRX-dependent HR outcompetes RECQ5-dependent SDSA for the repair of most two-ended DSBs in human cells and leads to the frequent formation of COs, assessed by measuring sister chromatid exchanges (SCEs). We provide evidence that subpathway choice is dependent on interaction of both ATRX and RECQ5 with proliferating cell nuclear antigen. We also show that the subpathway usage varies among different cancer cell lines and compare it to untransformed cells. We further observe HR intermediates arising as ionizing radiation (IR)-induced ultra-fine bridges only in cells expressing ATRX and lacking MUS81 and GEN1. Consistently, damage-induced MUS81 recruitment is only observed in ATRX-expressing cells. Cells lacking BLM show similar MUS81 recruitment and IR-induced SCE formation as control cells. Collectively, these results suggest that the ATRX pathway involves the formation of HR intermediates whose processing is entirely dependent on MUS81 and GEN1 and independent of BLM. We propose that the predominant ATRX-dependent HR subpathway forms joint molecules distinct from classical Holliday junctions.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Elbakry, Amira ; Juhász, Szilvia ; Chan, Ki Choi ; Löbrich, Markus
Art des Eintrags: Zweitveröffentlichung
Titel: ATRX and RECQ5 define distinct homologous recombination subpathways
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: National Academy of Sciences
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of the National Academy of Sciences of the United States of America
Jahrgang/Volume einer Zeitschrift: 118
(Heft-)Nummer: 3
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00018942
URL / URN: https://tuprints.ulb.tu-darmstadt.de/18942
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Homologous recombination (HR) is an important DNA double-strand break (DSB) repair pathway that copies sequence information lost at the break site from an undamaged homologous template. This involves the formation of a recombination structure that is processed to restore the original sequence but also harbors the potential for crossover (CO) formation between the participating molecules. Synthesis-dependent strand annealing (SDSA) is an HR subpathway that prevents CO formation and is thought to predominate in mammalian cells. The chromatin remodeler ATRX promotes an alternative HR subpathway that has the potential to form COs. Here, we show that ATRX-dependent HR outcompetes RECQ5-dependent SDSA for the repair of most two-ended DSBs in human cells and leads to the frequent formation of COs, assessed by measuring sister chromatid exchanges (SCEs). We provide evidence that subpathway choice is dependent on interaction of both ATRX and RECQ5 with proliferating cell nuclear antigen. We also show that the subpathway usage varies among different cancer cell lines and compare it to untransformed cells. We further observe HR intermediates arising as ionizing radiation (IR)-induced ultra-fine bridges only in cells expressing ATRX and lacking MUS81 and GEN1. Consistently, damage-induced MUS81 recruitment is only observed in ATRX-expressing cells. Cells lacking BLM show similar MUS81 recruitment and IR-induced SCE formation as control cells. Collectively, these results suggest that the ATRX pathway involves the formation of HR intermediates whose processing is entirely dependent on MUS81 and GEN1 and independent of BLM. We propose that the predominant ATRX-dependent HR subpathway forms joint molecules distinct from classical Holliday junctions.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-189429
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Radiation Biology and DNA Repair
Hinterlegungsdatum: 16 Aug 2021 12:18
Letzte Änderung: 24 Aug 2021 07:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen