TU Darmstadt / ULB / TUbiblio

AutoFoci, an automated high-throughput foci detection approach for analyzing low-dose DNA double-strand break repair

Lengert, Nicor ; Mirsch, Johanna ; Weimer, Ratna N. ; Schumann, Eik ; Haub, Peter ; Drossel, Barbara ; Löbrich, Markus (2021)
AutoFoci, an automated high-throughput foci detection approach for analyzing low-dose DNA double-strand break repair.
In: Scientific Reports, 2018, 8 (1)
doi: 10.26083/tuprints-00019035
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Double-strand breaks (DSBs) are the most lethal DNA damages induced by ionising radiation (IR) and their efficient repair is crucial to limit genomic instability. The cellular DSB response after low IR doses is of particular interest but its examination requires the analysis of high cell numbers. Here, we present an automated DSB quantification method based on the analysis of γH2AX and 53BP1 foci as markers for DSBs. We establish a combination of object properties, combined in the object evaluation parameter (OEP), which correlates with manual object classification. Strikingly, OEP histograms show a bi-modal distribution with two maxima and a minimum in between, which correlates with the manually determined transition between background signals and foci. We used algorithms to detect the minimum, thus separating foci from background signals and automatically assessing DSB levels. To demonstrate the validity of this method, we analyzed over 600.000 cells to verify results of previous studies showing that DSBs induced by low doses are less efficiently repaired compared with DSBs induced by higher doses. Thus, the automated foci counting method, called AutoFoci, provides a valuable tool for high-throughput image analysis of thousands of cells which will prove useful for many biological screening approaches.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Lengert, Nicor ; Mirsch, Johanna ; Weimer, Ratna N. ; Schumann, Eik ; Haub, Peter ; Drossel, Barbara ; Löbrich, Markus
Art des Eintrags: Zweitveröffentlichung
Titel: AutoFoci, an automated high-throughput foci detection approach for analyzing low-dose DNA double-strand break repair
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2018
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scientific Reports
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 1
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00019035
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19035
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Double-strand breaks (DSBs) are the most lethal DNA damages induced by ionising radiation (IR) and their efficient repair is crucial to limit genomic instability. The cellular DSB response after low IR doses is of particular interest but its examination requires the analysis of high cell numbers. Here, we present an automated DSB quantification method based on the analysis of γH2AX and 53BP1 foci as markers for DSBs. We establish a combination of object properties, combined in the object evaluation parameter (OEP), which correlates with manual object classification. Strikingly, OEP histograms show a bi-modal distribution with two maxima and a minimum in between, which correlates with the manually determined transition between background signals and foci. We used algorithms to detect the minimum, thus separating foci from background signals and automatically assessing DSB levels. To demonstrate the validity of this method, we analyzed over 600.000 cells to verify results of previous studies showing that DSBs induced by low doses are less efficiently repaired compared with DSBs induced by higher doses. Thus, the automated foci counting method, called AutoFoci, provides a valuable tool for high-throughput image analysis of thousands of cells which will prove useful for many biological screening approaches.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-190353
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Radiation Biology and DNA Repair
05 Fachbereich Physik
05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM)
Hinterlegungsdatum: 17 Aug 2021 12:08
Letzte Änderung: 23 Aug 2021 07:58
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen