TU Darmstadt / ULB / TUbiblio

Von den erblich-endlichen Mengen bis zu den Delta-Funktionen : Grundlegung einer widerspruchsfreien Nichtstandard-Mathematik

Zahn, Peter (2021)
Von den erblich-endlichen Mengen bis zu den Delta-Funktionen : Grundlegung einer widerspruchsfreien Nichtstandard-Mathematik.
doi: 10.26083/tuprints-00019223
Report, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Hereditarily finite sets can be constructed by the rules "construct 0" and "from a and b construct a{b}". For short we write {a,b,c} for 0{a}{b}{c}, e.g. Those sets together with the element relation satisfy the axioms of ZFC without the axiom of infinity. Certain of those sets can be considered to be natural numbers. We investigate an obviously consistent rule system which, however, is not a formal one. It containes a rule with infinitely many premises. By the rules of that system there is deducible the theory of hereditarily finite sets. From this result and a theorem of Jaques Herbrand it follows that a weakened version, zfc*, of ZFC is consistent. By an axiom of it there exists a set containing all natural numbers at least. From zfc* we infer some elementary facts of nonstandard analysis and also consider delta functions.

Typ des Eintrags: Report
Erschienen: 2021
Autor(en): Zahn, Peter
Art des Eintrags: Erstveröffentlichung
Titel: Von den erblich-endlichen Mengen bis zu den Delta-Funktionen : Grundlegung einer widerspruchsfreien Nichtstandard-Mathematik
Sprache: Deutsch
Publikationsjahr: 2021
Ort: Darmstadt
Kollation: 52 Seiten
DOI: 10.26083/tuprints-00019223
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19223
Kurzbeschreibung (Abstract):

Hereditarily finite sets can be constructed by the rules "construct 0" and "from a and b construct a{b}". For short we write {a,b,c} for 0{a}{b}{c}, e.g. Those sets together with the element relation satisfy the axioms of ZFC without the axiom of infinity. Certain of those sets can be considered to be natural numbers. We investigate an obviously consistent rule system which, however, is not a formal one. It containes a rule with infinitely many premises. By the rules of that system there is deducible the theory of hereditarily finite sets. From this result and a theorem of Jaques Herbrand it follows that a weakened version, zfc*, of ZFC is consistent. By an axiom of it there exists a set containing all natural numbers at least. From zfc* we infer some elementary facts of nonstandard analysis and also consider delta functions.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-192235
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Logik
Hinterlegungsdatum: 09 Aug 2021 12:21
Letzte Änderung: 16 Aug 2021 07:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen