TU Darmstadt / ULB / TUbiblio

Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase

Heidary, Nina ; Utesch, Tillmann ; Zerball, Maximilian ; Horch, Marius ; Millo, Diego ; Fritsch, Johannes ; Lenz, Oliver ; Klitzing, Regine von ; Hildebrandt, Peter ; Fischer, Anna ; Mroginski, Maria Andrea ; Zebger, Ingo (2021)
Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase.
In: PLOS ONE, 2015, 10 (11)
doi: 10.26083/tuprints-00019058
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Protein immobilization on electrodes is a key concept in exploiting enzymatic processes for bioelectronic devices. For optimum performance, an in-depth understanding of the enzyme-surface interactions is required. Here, we introduce an integral approach of experimental and theoretical methods that provides detailed insights into the adsorption of an oxygen-tolerant [NiFe] hydrogenase on a biocompatible gold electrode. Using atomic force microscopy, ellipsometry, surface-enhanced IR spectroscopy, and protein film voltammetry, we explore enzyme coverage, integrity, and activity, thereby probing both structure and catalytic H₂ conversion of the enzyme. Electrocatalytic efficiencies can be correlated with the mode of protein adsorption on the electrode as estimated theoretically by molecular dynamics simulations. Our results reveal that pre-activation at low potentials results in increased current densities, which can be rationalized in terms of a potential-induced re-orientation of the immobilized enzyme.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Heidary, Nina ; Utesch, Tillmann ; Zerball, Maximilian ; Horch, Marius ; Millo, Diego ; Fritsch, Johannes ; Lenz, Oliver ; Klitzing, Regine von ; Hildebrandt, Peter ; Fischer, Anna ; Mroginski, Maria Andrea ; Zebger, Ingo
Art des Eintrags: Zweitveröffentlichung
Titel: Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2015
Verlag: PLOS
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PLOS ONE
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 11
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00019058
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19058
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Protein immobilization on electrodes is a key concept in exploiting enzymatic processes for bioelectronic devices. For optimum performance, an in-depth understanding of the enzyme-surface interactions is required. Here, we introduce an integral approach of experimental and theoretical methods that provides detailed insights into the adsorption of an oxygen-tolerant [NiFe] hydrogenase on a biocompatible gold electrode. Using atomic force microscopy, ellipsometry, surface-enhanced IR spectroscopy, and protein film voltammetry, we explore enzyme coverage, integrity, and activity, thereby probing both structure and catalytic H₂ conversion of the enzyme. Electrocatalytic efficiencies can be correlated with the mode of protein adsorption on the electrode as estimated theoretically by molecular dynamics simulations. Our results reveal that pre-activation at low potentials results in increased current densities, which can be rationalized in terms of a potential-induced re-orientation of the immobilized enzyme.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-190580
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM)
Hinterlegungsdatum: 11 Aug 2021 13:05
Letzte Änderung: 16 Aug 2021 07:24
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen