Beck, Tobias (2021)
Novel decay properties of positive-parity low-spin states of deformed gadolinium and dysprosium nuclei.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00019255
Dissertation, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
Atomic nuclei are complex many-body quantum systems. Still, selected properties can often be modeled by macroscopic equilibrium shapes. Their evolution with nucleon number exhibits all signs of phase-transitional behavior. A prominent example for a transition between spherical and axially-symmetric deformed phases is the region of the nuclear chart in the vicinity of N = 90. It is characterized by a rapid onset of deformation with neutron number which is discernible from a multitude of observables such as isomer shifts, excitation energies, and transition strengths. Mixed-symmetry states – states with nontrivial symmetry properties regarding their proton and neutron subsystems – have proven their sensitivity to the underlying shell structure as well as shape evolution across quantum phase transitions. Especially the electromagnetic transitions between the 1+ scissors mode and the 0+2 state are strongly affected by the amount of nuclear deformation. In this work, the elusive E2 properties of mixed-symmetry states are established as novel signatures for phase- transitional behavior. This includes their extraction for the transitional nucleus 154Gd and the quadrupole deformed nuclei 162,164Dy using the method of nuclear resonance fluorescence at the High-Intensity γ-ray Source in Durham, NC, USA in connection with calculations in the proton-neutron version of the algebraic Interacting Boson Model. Precision values for the branching ratios between the scissors mode and the 2+1 state of 164Dy uncover significant deviations from the Alaga predictions for K = 1 states. From a two-state mixing calculation, the K- mixing matrix element along with first information on ∆K = 0 M1 excitation strength is obtained. The latter is about two orders of magnitude smaller than usual collective ∆K = 1 M1 strengths. This mixing is caused by the Coriolis interaction. It represents a first-order perturbation of a Hamiltonian which is diagonal in K. The associated mixing matrix element is twice as large as the one obtained from the second-order effect which admixes ground and γ bands.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2021 | ||||
Autor(en): | Beck, Tobias | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Novel decay properties of positive-parity low-spin states of deformed gadolinium and dysprosium nuclei | ||||
Sprache: | Englisch | ||||
Referenten: | Pietralla, Prof. Dr. Norbert ; Enders, Prof. Dr. Joachim | ||||
Publikationsjahr: | 2021 | ||||
Ort: | Darmstadt | ||||
Kollation: | xii, 171 Seiten | ||||
Datum der mündlichen Prüfung: | 5 Juli 2021 | ||||
DOI: | 10.26083/tuprints-00019255 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/19255 | ||||
Kurzbeschreibung (Abstract): | Atomic nuclei are complex many-body quantum systems. Still, selected properties can often be modeled by macroscopic equilibrium shapes. Their evolution with nucleon number exhibits all signs of phase-transitional behavior. A prominent example for a transition between spherical and axially-symmetric deformed phases is the region of the nuclear chart in the vicinity of N = 90. It is characterized by a rapid onset of deformation with neutron number which is discernible from a multitude of observables such as isomer shifts, excitation energies, and transition strengths. Mixed-symmetry states – states with nontrivial symmetry properties regarding their proton and neutron subsystems – have proven their sensitivity to the underlying shell structure as well as shape evolution across quantum phase transitions. Especially the electromagnetic transitions between the 1+ scissors mode and the 0+2 state are strongly affected by the amount of nuclear deformation. In this work, the elusive E2 properties of mixed-symmetry states are established as novel signatures for phase- transitional behavior. This includes their extraction for the transitional nucleus 154Gd and the quadrupole deformed nuclei 162,164Dy using the method of nuclear resonance fluorescence at the High-Intensity γ-ray Source in Durham, NC, USA in connection with calculations in the proton-neutron version of the algebraic Interacting Boson Model. Precision values for the branching ratios between the scissors mode and the 2+1 state of 164Dy uncover significant deviations from the Alaga predictions for K = 1 states. From a two-state mixing calculation, the K- mixing matrix element along with first information on ∆K = 0 M1 excitation strength is obtained. The latter is about two orders of magnitude smaller than usual collective ∆K = 1 M1 strengths. This mixing is caused by the Coriolis interaction. It represents a first-order perturbation of a Hamiltonian which is diagonal in K. The associated mixing matrix element is twice as large as the one obtained from the second-order effect which admixes ground and γ bands. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Status: | Verlagsversion | ||||
URN: | urn:nbn:de:tuda-tuprints-192550 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik | ||||
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Kernphysik 05 Fachbereich Physik > Institut für Kernphysik > Experimentelle Kernphysik 05 Fachbereich Physik > Institut für Kernphysik > Experimentelle Kernphysik > Experimentelle Kernstruktur und S-DALINAC |
||||
Hinterlegungsdatum: | 13 Aug 2021 12:56 | ||||
Letzte Änderung: | 08 Okt 2024 11:33 | ||||
PPN: | |||||
Referenten: | Pietralla, Prof. Dr. Norbert ; Enders, Prof. Dr. Joachim | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 5 Juli 2021 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |