TU Darmstadt / ULB / TUbiblio

Elastic and Frictional Properties of Fault Zones in Reservoir-Scale Hydro-Mechanical Models - A Sensitivity Study

Treffeisen, Torben ; Henk, Andreas (2021)
Elastic and Frictional Properties of Fault Zones in Reservoir-Scale Hydro-Mechanical Models - A Sensitivity Study.
In: Energies, 2021, 13 (18)
doi: 10.26083/tuprints-00018656
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The proper representation of faults in coupled hydro-mechanical reservoir models is challenged, among others, by the difference between the small-scale heterogeneity of fault zones observed in nature and the large size of the calculation cells in numerical simulations. In the present study we use a generic finite element (FE) model with a volumetric fault zone description to examine what effect the corresponding upscaled material parameters have on pore pressures, stresses, and deformation within and surrounding the fault zone. Such a sensitivity study is important as the usually poor data base regarding specific hydro-mechanical fault properties as well as the upscaling process introduces uncertainties, whose impact on the modelling results is otherwise difficult to assess. Altogether, 87 scenarios with different elastic and plastic parameter combinations were studied. Numerical modelling results indicate that Young’s modulus and cohesion assigned to the fault zone have the strongest influence on the stress and strain perturbations, both in absolute numbers as well as regarding the spatial extent. Angle of internal friction has only a minor and Poisson’s ratio of the fault zone a negligible impact. Finally, some general recommendations concerning the choice of mechanical fault zone properties for reservoir-scale hydro-mechanical models are given.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Treffeisen, Torben ; Henk, Andreas
Art des Eintrags: Zweitveröffentlichung
Titel: Elastic and Frictional Properties of Fault Zones in Reservoir-Scale Hydro-Mechanical Models - A Sensitivity Study
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2021
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Energies
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 18
Kollation: 27 Seiten
DOI: 10.26083/tuprints-00018656
URL / URN: https://tuprints.ulb.tu-darmstadt.de/18656
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

The proper representation of faults in coupled hydro-mechanical reservoir models is challenged, among others, by the difference between the small-scale heterogeneity of fault zones observed in nature and the large size of the calculation cells in numerical simulations. In the present study we use a generic finite element (FE) model with a volumetric fault zone description to examine what effect the corresponding upscaled material parameters have on pore pressures, stresses, and deformation within and surrounding the fault zone. Such a sensitivity study is important as the usually poor data base regarding specific hydro-mechanical fault properties as well as the upscaling process introduces uncertainties, whose impact on the modelling results is otherwise difficult to assess. Altogether, 87 scenarios with different elastic and plastic parameter combinations were studied. Numerical modelling results indicate that Young’s modulus and cohesion assigned to the fault zone have the strongest influence on the stress and strain perturbations, both in absolute numbers as well as regarding the spatial extent. Angle of internal friction has only a minor and Poisson’s ratio of the fault zone a negligible impact. Finally, some general recommendations concerning the choice of mechanical fault zone properties for reservoir-scale hydro-mechanical models are given.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-186568
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Ingenieurgeologie
Hinterlegungsdatum: 03 Aug 2021 07:16
Letzte Änderung: 10 Aug 2021 13:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen