Kuebert, T. ; Puder, H. ; Koeppl, H. (2021)
Improving Daily Routine Recognition in Hearing Aids Using Sequence Learning.
In: IEEE Access, 9
doi: 10.1109/ACCESS.2021.3092763
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
This work focuses on sequence learning to improve the daily routine recognition in hearing aids (HA), where the goal is to personalize the device configuration for each user. We apply the sequence methods on two large real-world data sets. One publicly available set contains the acceleration (ACC) data of one person, Huynh, over seven working days, whereas our set includes the real life of seven subjects over 104 days with ACC and audio data of a HA. For both sets, we design statistical features to represent the recurring routine behavior well. In our comprehensive simulations, we analyze several sequence classifiers learning the temporal relationships of high-level activities. The multi-layer perceptron (MLP) and random forest (RF) as an observation model for the hidden Markov model (HMM) show the best F-measure performance of 85.3% and 91.6% on our set and the Huynh set, respectively. In particular, the MLP-HMM combination strongly improves on both sets compared to the non-sequence classifier MLP by 6.7% and 10.2%. Within the segment error analysis, we show that the sequence classifiers improve the temporal prediction stability by a reduction of insertion errors. Thus, the improved sequence classification helps the user to better address his condition due to preferred HA settings.
Typ des Eintrags: | Artikel | ||||
---|---|---|---|---|---|
Erschienen: | 2021 | ||||
Autor(en): | Kuebert, T. ; Puder, H. ; Koeppl, H. | ||||
Art des Eintrags: | Bibliographie | ||||
Titel: | Improving Daily Routine Recognition in Hearing Aids Using Sequence Learning | ||||
Sprache: | Englisch | ||||
Publikationsjahr: | 28 Juni 2021 | ||||
Verlag: | IEEE | ||||
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Access | ||||
Jahrgang/Volume einer Zeitschrift: | 9 | ||||
DOI: | 10.1109/ACCESS.2021.3092763 | ||||
Kurzbeschreibung (Abstract): | This work focuses on sequence learning to improve the daily routine recognition in hearing aids (HA), where the goal is to personalize the device configuration for each user. We apply the sequence methods on two large real-world data sets. One publicly available set contains the acceleration (ACC) data of one person, Huynh, over seven working days, whereas our set includes the real life of seven subjects over 104 days with ACC and audio data of a HA. For both sets, we design statistical features to represent the recurring routine behavior well. In our comprehensive simulations, we analyze several sequence classifiers learning the temporal relationships of high-level activities. The multi-layer perceptron (MLP) and random forest (RF) as an observation model for the hidden Markov model (HMM) show the best F-measure performance of 85.3% and 91.6% on our set and the Huynh set, respectively. In particular, the MLP-HMM combination strongly improves on both sets compared to the non-sequence classifier MLP by 6.7% and 10.2%. Within the segment error analysis, we show that the sequence classifiers improve the temporal prediction stability by a reduction of insertion errors. Thus, the improved sequence classification helps the user to better address his condition due to preferred HA settings. |
||||
Schlagworte: |
|
||||
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) |
||||
Hinterlegungsdatum: | 09 Aug 2021 06:59 | ||||
Letzte Änderung: | 09 Jun 2022 08:00 | ||||
PPN: | |||||
Schlagworte: |
|
||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |