TU Darmstadt / ULB / TUbiblio

Elastic spherical inhomogeneity in an infinite elastic solid: an exact analysis by an engineering treatment of the problem based on the corresponding cavity solution

Amstutz, Hans ; Vormwald, Michael (2021)
Elastic spherical inhomogeneity in an infinite elastic solid: an exact analysis by an engineering treatment of the problem based on the corresponding cavity solution.
In: Archive of Applied Mechanics, 91 (4)
doi: 10.1007/s00419-020-01842-9
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

In the present work, solutions are recapitulated according to the theory of elasticity for the deformations of an adhesive spherical inhomogeneity in an infinite matrix under remote uniform axial and axial-symmetrical radial tension. Stress fields in the inhomogeneity and at the interface in the matrix are provided, too. It is shown that the sphere is deformed to a spheroid under any of the loading cases considered. Due to the axial-symmetric setup of the problem, the deformation is fully described by the two displacement values at line segments on the principal axes of the spheroid. The displacements depend on the applied remote load and on two traction fields at the inhomogeneity-matrix interface. For any combination of inhomogeneity and matrix stiffness, the condition of compatibility of deformations yields a system of two linear equations with the two magnitudes of the tractions as unknowns. Thus, the problem is reduced to a formulation for solving a twofold statically indetermined structure. The system is solved and the exact solution of the general spherical inhomogeneity problem with differing stiffness in terms of Young’s moduli and Poisson’s ratios of inclusion and matrix is presented.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Amstutz, Hans ; Vormwald, Michael
Art des Eintrags: Bibliographie
Titel: Elastic spherical inhomogeneity in an infinite elastic solid: an exact analysis by an engineering treatment of the problem based on the corresponding cavity solution
Sprache: Englisch
Publikationsjahr: August 2021
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Archive of Applied Mechanics
Jahrgang/Volume einer Zeitschrift: 91
(Heft-)Nummer: 4
DOI: 10.1007/s00419-020-01842-9
Zugehörige Links:
Kurzbeschreibung (Abstract):

In the present work, solutions are recapitulated according to the theory of elasticity for the deformations of an adhesive spherical inhomogeneity in an infinite matrix under remote uniform axial and axial-symmetrical radial tension. Stress fields in the inhomogeneity and at the interface in the matrix are provided, too. It is shown that the sphere is deformed to a spheroid under any of the loading cases considered. Due to the axial-symmetric setup of the problem, the deformation is fully described by the two displacement values at line segments on the principal axes of the spheroid. The displacements depend on the applied remote load and on two traction fields at the inhomogeneity-matrix interface. For any combination of inhomogeneity and matrix stiffness, the condition of compatibility of deformations yields a system of two linear equations with the two magnitudes of the tractions as unknowns. Thus, the problem is reduced to a formulation for solving a twofold statically indetermined structure. The system is solved and the exact solution of the general spherical inhomogeneity problem with differing stiffness in terms of Young’s moduli and Poisson’s ratios of inclusion and matrix is presented.

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Stahlbau und Werkstoffmechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Stahlbau und Werkstoffmechanik > Fachgebiet Werkstoffmechanik
Hinterlegungsdatum: 06 Aug 2021 09:10
Letzte Änderung: 19 Mär 2024 07:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen