TU Darmstadt / ULB / TUbiblio

NIR Iris Challenge Evaluation in Non-cooperative Environments: Segmentation and Localization

Wang, Caiyong ; Wang, Yunlong ; Zhang, Kunbo ; Muhammad, Jawad ; Lu, Tianhao ; Zhang, Qi ; Tian, Qichuan ; He, Zhaofeng ; Sun, Zhenan ; Zhang, Yiwen ; Liu, Tianbao ; Yang, Wei ; Wu, Dongliang ; Liu, Yingfeng ; Zhou, Ruiye ; Wu, Huihai ; Zhang, Hao ; Wang, Junbao ; Wang, Jiayi ; Xiong, Wantong ; Shi, Xueyu ; Zeng, Shao ; Li, Peihua ; Sun, Haodong ; Wang, Jing ; Zhang, Jiale ; Wang, Qi ; Wu, Huijie ; Zhang, Xinhui ; Li, Haiqing ; Chen, Yu ; Chen, Liang ; Zhang, Menghan ; Sun, Ye ; Zhou, Zhiyong ; Boutros, Fadi ; Damer, Naser ; Kuijper, Arjan ; Tapia, Juan ; Valenzuela, Andres ; Busch, Christoph ; Gupta, Gourav ; Raja, Kiran ; Wu, Xi ; Li, Xiaojie ; Yang, Jingfu ; Jing, Hongyan ; Wang, Xin ; Kong, Bin ; Yin, Youbing ; Song, Qi ; Lyu, Siwei ; Hu, Shu ; Premk, Leon ; Vitek, Matej ; Struc, Vitomir ; Peer, Peter ; Khiarak, Jalil Nourmohammadi ; Jaryani, Farhang ; Nasab, Samaneh Salehi ; Moafinejad, Seyed Naeim ; Amini, Yasin ; Noshad, Morteza (2021)
NIR Iris Challenge Evaluation in Non-cooperative Environments: Segmentation and Localization.
2021 IEEE International Joint Conference on Biometrics (IJCB). virtual Conference (04.08.2021-07.08.2021)
doi: 10.1109/IJCB52358.2021.9484336
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

For iris recognition in non-cooperative environments, iris segmentation has been regarded as the first most important challenge still open to the biometric community, affecting all downstream tasks from normalization to recognition. In recent years, deep learning technologies have gained significant popularity among various computer vision tasks and also been introduced in iris biometrics, especially iris segmentation. To investigate recent developments and attract more interest of researchers in the iris segmentation method, we organized the 2021 NIR Iris Challenge Evaluation in Non-cooperative Environments: Segmentation and Localization (NIR-ISL 2021) at the 2021 International Joint Conference on Biometrics (IJCB 2021). The challenge was used as a public platform to assess the performance of iris segmentation and localization methods on Asian and African NIR iris images captured in non-cooperative environments. The three best-performing entries achieved solid and satisfactory iris segmentation and localization results in most cases, and their code and models have been made publicly available for reproducibility research.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Wang, Caiyong ; Wang, Yunlong ; Zhang, Kunbo ; Muhammad, Jawad ; Lu, Tianhao ; Zhang, Qi ; Tian, Qichuan ; He, Zhaofeng ; Sun, Zhenan ; Zhang, Yiwen ; Liu, Tianbao ; Yang, Wei ; Wu, Dongliang ; Liu, Yingfeng ; Zhou, Ruiye ; Wu, Huihai ; Zhang, Hao ; Wang, Junbao ; Wang, Jiayi ; Xiong, Wantong ; Shi, Xueyu ; Zeng, Shao ; Li, Peihua ; Sun, Haodong ; Wang, Jing ; Zhang, Jiale ; Wang, Qi ; Wu, Huijie ; Zhang, Xinhui ; Li, Haiqing ; Chen, Yu ; Chen, Liang ; Zhang, Menghan ; Sun, Ye ; Zhou, Zhiyong ; Boutros, Fadi ; Damer, Naser ; Kuijper, Arjan ; Tapia, Juan ; Valenzuela, Andres ; Busch, Christoph ; Gupta, Gourav ; Raja, Kiran ; Wu, Xi ; Li, Xiaojie ; Yang, Jingfu ; Jing, Hongyan ; Wang, Xin ; Kong, Bin ; Yin, Youbing ; Song, Qi ; Lyu, Siwei ; Hu, Shu ; Premk, Leon ; Vitek, Matej ; Struc, Vitomir ; Peer, Peter ; Khiarak, Jalil Nourmohammadi ; Jaryani, Farhang ; Nasab, Samaneh Salehi ; Moafinejad, Seyed Naeim ; Amini, Yasin ; Noshad, Morteza
Art des Eintrags: Bibliographie
Titel: NIR Iris Challenge Evaluation in Non-cooperative Environments: Segmentation and Localization
Sprache: Englisch
Publikationsjahr: 2021
Verlag: IEEE
Veranstaltungstitel: 2021 IEEE International Joint Conference on Biometrics (IJCB)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 04.08.2021-07.08.2021
DOI: 10.1109/IJCB52358.2021.9484336
Kurzbeschreibung (Abstract):

For iris recognition in non-cooperative environments, iris segmentation has been regarded as the first most important challenge still open to the biometric community, affecting all downstream tasks from normalization to recognition. In recent years, deep learning technologies have gained significant popularity among various computer vision tasks and also been introduced in iris biometrics, especially iris segmentation. To investigate recent developments and attract more interest of researchers in the iris segmentation method, we organized the 2021 NIR Iris Challenge Evaluation in Non-cooperative Environments: Segmentation and Localization (NIR-ISL 2021) at the 2021 International Joint Conference on Biometrics (IJCB 2021). The challenge was used as a public platform to assess the performance of iris segmentation and localization methods on Asian and African NIR iris images captured in non-cooperative environments. The three best-performing entries achieved solid and satisfactory iris segmentation and localization results in most cases, and their code and models have been made publicly available for reproducibility research.

Freie Schlagworte: Biometrics, Deep learning, Machine learning, Iris recognition, Image segmentation
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 03 Aug 2021 13:10
Letzte Änderung: 03 Aug 2021 13:10
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen