TU Darmstadt / ULB / TUbiblio

MixFaceNets: Extremely Efficient Face Recognition Networks

Boutros, Fadi ; Damer, Naser ; Fang, Meiling ; Kirchbuchner, Florian ; Kuijper, Arjan (2021)
MixFaceNets: Extremely Efficient Face Recognition Networks.
2021 IEEE International Joint Conference on Biometrics (IJCB). virtual Conference (04.08.2021-07.08.2021)
doi: 10.1109/IJCB52358.2021.9484374
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we present a set of extremely efficient and high throughput models for accurate face verification, Mix-FaceNets which are inspired by Mixed Depthwise Convolutional Kernels. Extensive experiment evaluations on Label Face in the Wild (LFW), Age-DB, MegaFace, and IARPA Janus Benchmarks IJB-B and IJB-C datasets have shown the effectiveness of our MixFaceNets for applications requiring extremely low computational complexity. Under the same level of computation complexity (≤ 500M FLOPs), our MixFaceNets outperform MobileFaceNets on all the evaluated datasets, achieving 99.60% accuracy on LFW, 97.05% accuracy on AgeDB-30, 93.60 TAR (at FAR1e-6) on MegaFace, 90.94 TAR (at FAR1e-4) on IJB-B and 93.08 TAR (at FAR1e-4) on IJB-C. With computational complexity between 500M and 1G FLOPs, our MixFaceNets achieved results comparable to the top-ranked models, while using significantly fewer FLOPs and less computation over-head, which proves the practical value of our proposed Mix-FaceNets. All training codes, pre-trained models, and training logs have been made available https://github.com/fdbtrs/mixfacenets.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Boutros, Fadi ; Damer, Naser ; Fang, Meiling ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: MixFaceNets: Extremely Efficient Face Recognition Networks
Sprache: Englisch
Publikationsjahr: 20 Juli 2021
Verlag: IEEE
Veranstaltungstitel: 2021 IEEE International Joint Conference on Biometrics (IJCB)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 04.08.2021-07.08.2021
DOI: 10.1109/IJCB52358.2021.9484374
Kurzbeschreibung (Abstract):

In this paper, we present a set of extremely efficient and high throughput models for accurate face verification, Mix-FaceNets which are inspired by Mixed Depthwise Convolutional Kernels. Extensive experiment evaluations on Label Face in the Wild (LFW), Age-DB, MegaFace, and IARPA Janus Benchmarks IJB-B and IJB-C datasets have shown the effectiveness of our MixFaceNets for applications requiring extremely low computational complexity. Under the same level of computation complexity (≤ 500M FLOPs), our MixFaceNets outperform MobileFaceNets on all the evaluated datasets, achieving 99.60% accuracy on LFW, 97.05% accuracy on AgeDB-30, 93.60 TAR (at FAR1e-6) on MegaFace, 90.94 TAR (at FAR1e-4) on IJB-B and 93.08 TAR (at FAR1e-4) on IJB-C. With computational complexity between 500M and 1G FLOPs, our MixFaceNets achieved results comparable to the top-ranked models, while using significantly fewer FLOPs and less computation over-head, which proves the practical value of our proposed Mix-FaceNets. All training codes, pre-trained models, and training logs have been made available https://github.com/fdbtrs/mixfacenets.

Freie Schlagworte: Biometrics, Deep learning, Machine learning, Face recognition, Artificial neural networks
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 03 Aug 2021 07:05
Letzte Änderung: 03 Aug 2021 07:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen