Boutros, Fadi ; Damer, Naser ; Fang, Meiling ; Kirchbuchner, Florian ; Kuijper, Arjan (2021)
MixFaceNets: Extremely Efficient Face Recognition Networks.
2021 IEEE International Joint Conference on Biometrics (IJCB). virtual Conference (04.08.2021-07.08.2021)
doi: 10.1109/IJCB52358.2021.9484374
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
In this paper, we present a set of extremely efficient and high throughput models for accurate face verification, Mix-FaceNets which are inspired by Mixed Depthwise Convolutional Kernels. Extensive experiment evaluations on Label Face in the Wild (LFW), Age-DB, MegaFace, and IARPA Janus Benchmarks IJB-B and IJB-C datasets have shown the effectiveness of our MixFaceNets for applications requiring extremely low computational complexity. Under the same level of computation complexity (≤ 500M FLOPs), our MixFaceNets outperform MobileFaceNets on all the evaluated datasets, achieving 99.60% accuracy on LFW, 97.05% accuracy on AgeDB-30, 93.60 TAR (at FAR1e-6) on MegaFace, 90.94 TAR (at FAR1e-4) on IJB-B and 93.08 TAR (at FAR1e-4) on IJB-C. With computational complexity between 500M and 1G FLOPs, our MixFaceNets achieved results comparable to the top-ranked models, while using significantly fewer FLOPs and less computation over-head, which proves the practical value of our proposed Mix-FaceNets. All training codes, pre-trained models, and training logs have been made available https://github.com/fdbtrs/mixfacenets.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2021 |
Autor(en): | Boutros, Fadi ; Damer, Naser ; Fang, Meiling ; Kirchbuchner, Florian ; Kuijper, Arjan |
Art des Eintrags: | Bibliographie |
Titel: | MixFaceNets: Extremely Efficient Face Recognition Networks |
Sprache: | Englisch |
Publikationsjahr: | 20 Juli 2021 |
Verlag: | IEEE |
Veranstaltungstitel: | 2021 IEEE International Joint Conference on Biometrics (IJCB) |
Veranstaltungsort: | virtual Conference |
Veranstaltungsdatum: | 04.08.2021-07.08.2021 |
DOI: | 10.1109/IJCB52358.2021.9484374 |
Kurzbeschreibung (Abstract): | In this paper, we present a set of extremely efficient and high throughput models for accurate face verification, Mix-FaceNets which are inspired by Mixed Depthwise Convolutional Kernels. Extensive experiment evaluations on Label Face in the Wild (LFW), Age-DB, MegaFace, and IARPA Janus Benchmarks IJB-B and IJB-C datasets have shown the effectiveness of our MixFaceNets for applications requiring extremely low computational complexity. Under the same level of computation complexity (≤ 500M FLOPs), our MixFaceNets outperform MobileFaceNets on all the evaluated datasets, achieving 99.60% accuracy on LFW, 97.05% accuracy on AgeDB-30, 93.60 TAR (at FAR1e-6) on MegaFace, 90.94 TAR (at FAR1e-4) on IJB-B and 93.08 TAR (at FAR1e-4) on IJB-C. With computational complexity between 500M and 1G FLOPs, our MixFaceNets achieved results comparable to the top-ranked models, while using significantly fewer FLOPs and less computation over-head, which proves the practical value of our proposed Mix-FaceNets. All training codes, pre-trained models, and training logs have been made available https://github.com/fdbtrs/mixfacenets. |
Freie Schlagworte: | Biometrics, Deep learning, Machine learning, Face recognition, Artificial neural networks |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme 20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing |
Hinterlegungsdatum: | 03 Aug 2021 07:05 |
Letzte Änderung: | 03 Aug 2021 07:05 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |