TU Darmstadt / ULB / TUbiblio

Evaluation of Multiparametric Linear Programming for Economic Dispatch under Uncertainty

Sindt, Johannes ; Santos, Allan ; Pfetsch, Marc E. ; Steinke, Florian (2021)
Evaluation of Multiparametric Linear Programming for Economic Dispatch under Uncertainty.
2021 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). virtual Conference (18.10.2021-21.10.2021)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

For risk assessment purposes, we study how economic dispatch decisions vary with the uncertain input factors that may arise, e.g., from the use of variable renewable energies. Given a known random input distribution and linear programming (LP)-based dispatch, we aim to describe the distribution of the resulting variables and objective values. Relying on Monte Carlo simulation (MCS) is computationally expensive, especially if the uncertain factors are high dimensional. In this paper we evaluate an algorithm using multiparametric linear programming (MPLP) for this purpose. It avoids solving an LP for every sample of the random vector by characterizing the parametric LP solution as a piece-wise linear function whose pieces can be stored for repeated use. We compare the algorithm with MCS and other quasi-Monte Carlo sampling approaches for three economic dispatch use cases with varying complexity. The MPLP approach is as accurate as MCS, but up to 300 times faster for the merit order use case.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Sindt, Johannes ; Santos, Allan ; Pfetsch, Marc E. ; Steinke, Florian
Art des Eintrags: Bibliographie
Titel: Evaluation of Multiparametric Linear Programming for Economic Dispatch under Uncertainty
Sprache: Englisch
Publikationsjahr: 2021
Veranstaltungstitel: 2021 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 18.10.2021-21.10.2021
Kurzbeschreibung (Abstract):

For risk assessment purposes, we study how economic dispatch decisions vary with the uncertain input factors that may arise, e.g., from the use of variable renewable energies. Given a known random input distribution and linear programming (LP)-based dispatch, we aim to describe the distribution of the resulting variables and objective values. Relying on Monte Carlo simulation (MCS) is computationally expensive, especially if the uncertain factors are high dimensional. In this paper we evaluate an algorithm using multiparametric linear programming (MPLP) for this purpose. It avoids solving an LP for every sample of the random vector by characterizing the parametric LP solution as a piece-wise linear function whose pieces can be stored for repeated use. We compare the algorithm with MCS and other quasi-Monte Carlo sampling approaches for three economic dispatch use cases with varying complexity. The MPLP approach is as accurate as MCS, but up to 300 times faster for the merit order use case.

Freie Schlagworte: emergenCITY, emergenCITY_CPS
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Energieinformationsnetze und Systeme (EINS)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Forschungsfelder
Forschungsfelder > Energy and Environment
Forschungsfelder > Energy and Environment > Integrated Energy Systems
Hinterlegungsdatum: 03 Aug 2021 06:56
Letzte Änderung: 06 Feb 2023 13:09
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen