TU Darmstadt / ULB / TUbiblio

Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor

von Bohnstein, Maximilian ; Yildiz, Coskun ; Frigge, Lorenz ; Ströhle, Jochen ; Epple, Bernd (2021)
Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor.
In: Energies, 2020, 13 (17)
doi: 10.26083/tuprints-00019236
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Gaseous sulfur species play a major role in high temperature corrosion of pulverized coal fired furnaces. The prediction of sulfur species concentrations by 3D-Computational Fluid Dynamics (CFD) simulation allows the identification of furnace wall regions that are exposed to corrosive gases, so that countermeasures against corrosion can be applied. In the present work, a model for the release of sulfur and chlorine species during coal combustion is presented. The model is based on the mineral matter transformation of sulfur and chlorine bearing minerals under coal combustion conditions. The model is appended to a detailed reaction mechanism for gaseous sulfur and chlorine species and hydrocarbon related reactions, as well as a global three-step mechanism for coal devolatilization, char combustion, and char gasification. Experiments in an entrained flow were carried out to validate the developed model. Three-dimensional numerical simulations of an entrained flow reactor were performed by CFD using the developed model. Calculated concentrations of SO2, H2S, COS, and HCl showed good agreement with the measurements. Hence, the developed model can be regarded as a reliable method for the prediction of corrosive sulfur and chlorine species in coal fired furnaces. Further improvement is needed in the prediction of some minor trace species.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): von Bohnstein, Maximilian ; Yildiz, Coskun ; Frigge, Lorenz ; Ströhle, Jochen ; Epple, Bernd
Art des Eintrags: Zweitveröffentlichung
Titel: Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Energies
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 17
Kollation: 24 Seiten
DOI: 10.26083/tuprints-00019236
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19236
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Gaseous sulfur species play a major role in high temperature corrosion of pulverized coal fired furnaces. The prediction of sulfur species concentrations by 3D-Computational Fluid Dynamics (CFD) simulation allows the identification of furnace wall regions that are exposed to corrosive gases, so that countermeasures against corrosion can be applied. In the present work, a model for the release of sulfur and chlorine species during coal combustion is presented. The model is based on the mineral matter transformation of sulfur and chlorine bearing minerals under coal combustion conditions. The model is appended to a detailed reaction mechanism for gaseous sulfur and chlorine species and hydrocarbon related reactions, as well as a global three-step mechanism for coal devolatilization, char combustion, and char gasification. Experiments in an entrained flow were carried out to validate the developed model. Three-dimensional numerical simulations of an entrained flow reactor were performed by CFD using the developed model. Calculated concentrations of SO2, H2S, COS, and HCl showed good agreement with the measurements. Hence, the developed model can be regarded as a reliable method for the prediction of corrosive sulfur and chlorine species in coal fired furnaces. Further improvement is needed in the prediction of some minor trace species.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-192365
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Energiesysteme und Energietechnik (EST)
Hinterlegungsdatum: 30 Jul 2021 08:06
Letzte Änderung: 02 Aug 2021 06:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen